Probing the structure–function relationship with neural networks constructed by solving a system of linear equations
- Autores
- Mininni, Camilo Juan; Zanutto, Bonifacio Silvano
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Neural network models are an invaluable tool to understand brain function since they allow us to connect the cellular and circuit levels with behaviour. Neural networks usually comprise a huge number of parameters, which must be chosen carefully such that networks reproduce anatomical, behavioural, and neurophysiological data. These parameters are usually fitted with off-the-shelf optimization algorithms that iteratively change network parameters and simulate the network to evaluate its performance and improve fitting. Here we propose to invert the fitting process by proceeding from the network dynamics towards network parameters. Firing state transitions are chosen according to the transition graph associated with the solution of a task. Then, a system of linear equations is constructed from the network firing states and membrane potentials, in a way that guarantees the consistency of the system. This allows us to uncouple the dynamical features of the model, like its neurons firing rate and correlation, from the structural features, and the task-solving algorithm implemented by the network. We employed our method to probe the structure–function relationship in a sequence memory task. The networks obtained showed connectivity and firing statistics that recapitulated experimental observations. We argue that the proposed method is a complementary and needed alternative to the way neural networks are constructed to model brain function.
Fil: Mininni, Camilo Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica.; Argentina
Fil: Zanutto, Bonifacio Silvano. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica.; Argentina - Materia
-
NEURAL NETWORK
CIRCUIT LEVELS circuit levels
BEHAVIOUR
NEURONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/140169
Ver los metadatos del registro completo
id |
CONICETDig_4a72a8536e3151cd84df0a49cfb3b9ec |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/140169 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Probing the structure–function relationship with neural networks constructed by solving a system of linear equationsMininni, Camilo JuanZanutto, Bonifacio SilvanoNEURAL NETWORKCIRCUIT LEVELS circuit levelsBEHAVIOURNEURONShttps://purl.org/becyt/ford/2.6https://purl.org/becyt/ford/2https://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3Neural network models are an invaluable tool to understand brain function since they allow us to connect the cellular and circuit levels with behaviour. Neural networks usually comprise a huge number of parameters, which must be chosen carefully such that networks reproduce anatomical, behavioural, and neurophysiological data. These parameters are usually fitted with off-the-shelf optimization algorithms that iteratively change network parameters and simulate the network to evaluate its performance and improve fitting. Here we propose to invert the fitting process by proceeding from the network dynamics towards network parameters. Firing state transitions are chosen according to the transition graph associated with the solution of a task. Then, a system of linear equations is constructed from the network firing states and membrane potentials, in a way that guarantees the consistency of the system. This allows us to uncouple the dynamical features of the model, like its neurons firing rate and correlation, from the structural features, and the task-solving algorithm implemented by the network. We employed our method to probe the structure–function relationship in a sequence memory task. The networks obtained showed connectivity and firing statistics that recapitulated experimental observations. We argue that the proposed method is a complementary and needed alternative to the way neural networks are constructed to model brain function.Fil: Mininni, Camilo Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica.; ArgentinaFil: Zanutto, Bonifacio Silvano. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica.; ArgentinaNature Research2021-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/140169Mininni, Camilo Juan; Zanutto, Bonifacio Silvano; Probing the structure–function relationship with neural networks constructed by solving a system of linear equations; Nature Research; Scientific Reports; 11; 1; 12-2021; 1-182045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-021-82964-0info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-021-82964-0info:eu-repo/semantics/altIdentifier/pmid/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884791/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:01:00Zoai:ri.conicet.gov.ar:11336/140169instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:01:00.36CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Probing the structure–function relationship with neural networks constructed by solving a system of linear equations |
title |
Probing the structure–function relationship with neural networks constructed by solving a system of linear equations |
spellingShingle |
Probing the structure–function relationship with neural networks constructed by solving a system of linear equations Mininni, Camilo Juan NEURAL NETWORK CIRCUIT LEVELS circuit levels BEHAVIOUR NEURONS |
title_short |
Probing the structure–function relationship with neural networks constructed by solving a system of linear equations |
title_full |
Probing the structure–function relationship with neural networks constructed by solving a system of linear equations |
title_fullStr |
Probing the structure–function relationship with neural networks constructed by solving a system of linear equations |
title_full_unstemmed |
Probing the structure–function relationship with neural networks constructed by solving a system of linear equations |
title_sort |
Probing the structure–function relationship with neural networks constructed by solving a system of linear equations |
dc.creator.none.fl_str_mv |
Mininni, Camilo Juan Zanutto, Bonifacio Silvano |
author |
Mininni, Camilo Juan |
author_facet |
Mininni, Camilo Juan Zanutto, Bonifacio Silvano |
author_role |
author |
author2 |
Zanutto, Bonifacio Silvano |
author2_role |
author |
dc.subject.none.fl_str_mv |
NEURAL NETWORK CIRCUIT LEVELS circuit levels BEHAVIOUR NEURONS |
topic |
NEURAL NETWORK CIRCUIT LEVELS circuit levels BEHAVIOUR NEURONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.6 https://purl.org/becyt/ford/2 https://purl.org/becyt/ford/3.1 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Neural network models are an invaluable tool to understand brain function since they allow us to connect the cellular and circuit levels with behaviour. Neural networks usually comprise a huge number of parameters, which must be chosen carefully such that networks reproduce anatomical, behavioural, and neurophysiological data. These parameters are usually fitted with off-the-shelf optimization algorithms that iteratively change network parameters and simulate the network to evaluate its performance and improve fitting. Here we propose to invert the fitting process by proceeding from the network dynamics towards network parameters. Firing state transitions are chosen according to the transition graph associated with the solution of a task. Then, a system of linear equations is constructed from the network firing states and membrane potentials, in a way that guarantees the consistency of the system. This allows us to uncouple the dynamical features of the model, like its neurons firing rate and correlation, from the structural features, and the task-solving algorithm implemented by the network. We employed our method to probe the structure–function relationship in a sequence memory task. The networks obtained showed connectivity and firing statistics that recapitulated experimental observations. We argue that the proposed method is a complementary and needed alternative to the way neural networks are constructed to model brain function. Fil: Mininni, Camilo Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica.; Argentina Fil: Zanutto, Bonifacio Silvano. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica.; Argentina |
description |
Neural network models are an invaluable tool to understand brain function since they allow us to connect the cellular and circuit levels with behaviour. Neural networks usually comprise a huge number of parameters, which must be chosen carefully such that networks reproduce anatomical, behavioural, and neurophysiological data. These parameters are usually fitted with off-the-shelf optimization algorithms that iteratively change network parameters and simulate the network to evaluate its performance and improve fitting. Here we propose to invert the fitting process by proceeding from the network dynamics towards network parameters. Firing state transitions are chosen according to the transition graph associated with the solution of a task. Then, a system of linear equations is constructed from the network firing states and membrane potentials, in a way that guarantees the consistency of the system. This allows us to uncouple the dynamical features of the model, like its neurons firing rate and correlation, from the structural features, and the task-solving algorithm implemented by the network. We employed our method to probe the structure–function relationship in a sequence memory task. The networks obtained showed connectivity and firing statistics that recapitulated experimental observations. We argue that the proposed method is a complementary and needed alternative to the way neural networks are constructed to model brain function. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/140169 Mininni, Camilo Juan; Zanutto, Bonifacio Silvano; Probing the structure–function relationship with neural networks constructed by solving a system of linear equations; Nature Research; Scientific Reports; 11; 1; 12-2021; 1-18 2045-2322 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/140169 |
identifier_str_mv |
Mininni, Camilo Juan; Zanutto, Bonifacio Silvano; Probing the structure–function relationship with neural networks constructed by solving a system of linear equations; Nature Research; Scientific Reports; 11; 1; 12-2021; 1-18 2045-2322 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-021-82964-0 info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-021-82964-0 info:eu-repo/semantics/altIdentifier/pmid/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884791/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature Research |
publisher.none.fl_str_mv |
Nature Research |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269670139232256 |
score |
13.13397 |