Optimization of Host Cell-Compatible, Antimicrobial Peptides Effective against Biofilms and Clinical Isolates of Drug-Resistant Bacteria
- Autores
- Ghimire, Jenisha; Hart, Robert J.; Soldano, Anabel; Chen, Charles H.; Guha, Shantanu; Hoffmann, Joseph P.; Hall, Kalen M.; Sun, Leisheng; Nelson, Benjamin J.; Lu, Timothy K.; Kolls, Jay K.; Rivera, Mario; Morici, Lisa A.; Wimley, William C.
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Here, we describe the continued synthetic molecular evolution of a lineage of host-compatible antimicrobial peptides (AMP) intended for the treatment of wounds infected with drug-resistant, biofilm-forming bacteria. The peptides tested are variants of an evolved AMP called d-amino acid CONsensus with Glycine Absent (d-CONGA), which has excellent antimicrobial activities in vitro and in vivo. In this newest generation of rational d-CONGA variants, we tested multiple sequence-structure-function hypotheses that had not been tested in previous generations. Many of the peptide variants have lower antibacterial activity against Gram-positive or Gram-negative pathogens, especially variants that have altered hydrophobicity, secondary structure potential, or spatial distribution of charged and hydrophobic residues. Thus, d-CONGA is generally well tuned for antimicrobial activity. However, we identified a variant, d-CONGA-Q7, with a polar glutamine inserted into the middle of the sequence, that has higher activity against both planktonic and biofilm-forming bacteria as well as lower cytotoxicity against human fibroblasts. Against clinical isolates of Klebsiella pneumoniae, innate resistance to d-CONGA was surprisingly common despite a lack of inducible resistance in Pseudomonas aeruginosa reported previously. Yet, these same isolates were susceptible to d-CONGA-Q7. d-CONGA-Q7 is much less vulnerable to AMP resistance in Gram-negative bacteria than its predecessor. Consistent with the spirit of synthetic molecular evolution, d-CONGA-Q7 achieved a critical gain-of-function and has a significantly better activity profile.
Fil: Ghimire, Jenisha. University of Tulane; Estados Unidos
Fil: Hart, Robert J.. University of Tulane; Estados Unidos
Fil: Soldano, Anabel. Louisiana Tech University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina
Fil: Chen, Charles H.. Massachusetts Institute of Technology; Estados Unidos
Fil: Guha, Shantanu. University of Tulane; Estados Unidos
Fil: Hoffmann, Joseph P.. University of Tulane; Estados Unidos
Fil: Hall, Kalen M.. University of Tulane; Estados Unidos
Fil: Sun, Leisheng. University of Tulane; Estados Unidos
Fil: Nelson, Benjamin J.. University of Tulane; Estados Unidos
Fil: Lu, Timothy K.. Massachusetts Institute of Technology; Estados Unidos
Fil: Kolls, Jay K.. University of Tulane; Estados Unidos
Fil: Rivera, Mario. State University of Louisiana; Estados Unidos
Fil: Morici, Lisa A.. University of Tulane; Estados Unidos
Fil: Wimley, William C.. University of Tulane; Estados Unidos - Materia
-
ANTIBIOTIC
ANTIMICROBIAL PEPTIDE
DRUG RESISTANCE
MOLECULAR EVOLUTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/225743
Ver los metadatos del registro completo
id |
CONICETDig_49e876939f8f4bdd9b0c46f91d7de040 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/225743 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Optimization of Host Cell-Compatible, Antimicrobial Peptides Effective against Biofilms and Clinical Isolates of Drug-Resistant BacteriaGhimire, JenishaHart, Robert J.Soldano, AnabelChen, Charles H.Guha, ShantanuHoffmann, Joseph P.Hall, Kalen M.Sun, LeishengNelson, Benjamin J.Lu, Timothy K.Kolls, Jay K.Rivera, MarioMorici, Lisa A.Wimley, William C.ANTIBIOTICANTIMICROBIAL PEPTIDEDRUG RESISTANCEMOLECULAR EVOLUTIONhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Here, we describe the continued synthetic molecular evolution of a lineage of host-compatible antimicrobial peptides (AMP) intended for the treatment of wounds infected with drug-resistant, biofilm-forming bacteria. The peptides tested are variants of an evolved AMP called d-amino acid CONsensus with Glycine Absent (d-CONGA), which has excellent antimicrobial activities in vitro and in vivo. In this newest generation of rational d-CONGA variants, we tested multiple sequence-structure-function hypotheses that had not been tested in previous generations. Many of the peptide variants have lower antibacterial activity against Gram-positive or Gram-negative pathogens, especially variants that have altered hydrophobicity, secondary structure potential, or spatial distribution of charged and hydrophobic residues. Thus, d-CONGA is generally well tuned for antimicrobial activity. However, we identified a variant, d-CONGA-Q7, with a polar glutamine inserted into the middle of the sequence, that has higher activity against both planktonic and biofilm-forming bacteria as well as lower cytotoxicity against human fibroblasts. Against clinical isolates of Klebsiella pneumoniae, innate resistance to d-CONGA was surprisingly common despite a lack of inducible resistance in Pseudomonas aeruginosa reported previously. Yet, these same isolates were susceptible to d-CONGA-Q7. d-CONGA-Q7 is much less vulnerable to AMP resistance in Gram-negative bacteria than its predecessor. Consistent with the spirit of synthetic molecular evolution, d-CONGA-Q7 achieved a critical gain-of-function and has a significantly better activity profile.Fil: Ghimire, Jenisha. University of Tulane; Estados UnidosFil: Hart, Robert J.. University of Tulane; Estados UnidosFil: Soldano, Anabel. Louisiana Tech University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Chen, Charles H.. Massachusetts Institute of Technology; Estados UnidosFil: Guha, Shantanu. University of Tulane; Estados UnidosFil: Hoffmann, Joseph P.. University of Tulane; Estados UnidosFil: Hall, Kalen M.. University of Tulane; Estados UnidosFil: Sun, Leisheng. University of Tulane; Estados UnidosFil: Nelson, Benjamin J.. University of Tulane; Estados UnidosFil: Lu, Timothy K.. Massachusetts Institute of Technology; Estados UnidosFil: Kolls, Jay K.. University of Tulane; Estados UnidosFil: Rivera, Mario. State University of Louisiana; Estados UnidosFil: Morici, Lisa A.. University of Tulane; Estados UnidosFil: Wimley, William C.. University of Tulane; Estados UnidosAmerican Chemical Society2023-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/225743Ghimire, Jenisha; Hart, Robert J.; Soldano, Anabel; Chen, Charles H.; Guha, Shantanu; et al.; Optimization of Host Cell-Compatible, Antimicrobial Peptides Effective against Biofilms and Clinical Isolates of Drug-Resistant Bacteria; American Chemical Society; ACS Infectious Diseases; 9; 4; 4-2023; 952-9652373-8227CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/acsinfecdis.2c00640info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:11:36Zoai:ri.conicet.gov.ar:11336/225743instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:11:37.027CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Optimization of Host Cell-Compatible, Antimicrobial Peptides Effective against Biofilms and Clinical Isolates of Drug-Resistant Bacteria |
title |
Optimization of Host Cell-Compatible, Antimicrobial Peptides Effective against Biofilms and Clinical Isolates of Drug-Resistant Bacteria |
spellingShingle |
Optimization of Host Cell-Compatible, Antimicrobial Peptides Effective against Biofilms and Clinical Isolates of Drug-Resistant Bacteria Ghimire, Jenisha ANTIBIOTIC ANTIMICROBIAL PEPTIDE DRUG RESISTANCE MOLECULAR EVOLUTION |
title_short |
Optimization of Host Cell-Compatible, Antimicrobial Peptides Effective against Biofilms and Clinical Isolates of Drug-Resistant Bacteria |
title_full |
Optimization of Host Cell-Compatible, Antimicrobial Peptides Effective against Biofilms and Clinical Isolates of Drug-Resistant Bacteria |
title_fullStr |
Optimization of Host Cell-Compatible, Antimicrobial Peptides Effective against Biofilms and Clinical Isolates of Drug-Resistant Bacteria |
title_full_unstemmed |
Optimization of Host Cell-Compatible, Antimicrobial Peptides Effective against Biofilms and Clinical Isolates of Drug-Resistant Bacteria |
title_sort |
Optimization of Host Cell-Compatible, Antimicrobial Peptides Effective against Biofilms and Clinical Isolates of Drug-Resistant Bacteria |
dc.creator.none.fl_str_mv |
Ghimire, Jenisha Hart, Robert J. Soldano, Anabel Chen, Charles H. Guha, Shantanu Hoffmann, Joseph P. Hall, Kalen M. Sun, Leisheng Nelson, Benjamin J. Lu, Timothy K. Kolls, Jay K. Rivera, Mario Morici, Lisa A. Wimley, William C. |
author |
Ghimire, Jenisha |
author_facet |
Ghimire, Jenisha Hart, Robert J. Soldano, Anabel Chen, Charles H. Guha, Shantanu Hoffmann, Joseph P. Hall, Kalen M. Sun, Leisheng Nelson, Benjamin J. Lu, Timothy K. Kolls, Jay K. Rivera, Mario Morici, Lisa A. Wimley, William C. |
author_role |
author |
author2 |
Hart, Robert J. Soldano, Anabel Chen, Charles H. Guha, Shantanu Hoffmann, Joseph P. Hall, Kalen M. Sun, Leisheng Nelson, Benjamin J. Lu, Timothy K. Kolls, Jay K. Rivera, Mario Morici, Lisa A. Wimley, William C. |
author2_role |
author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
ANTIBIOTIC ANTIMICROBIAL PEPTIDE DRUG RESISTANCE MOLECULAR EVOLUTION |
topic |
ANTIBIOTIC ANTIMICROBIAL PEPTIDE DRUG RESISTANCE MOLECULAR EVOLUTION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Here, we describe the continued synthetic molecular evolution of a lineage of host-compatible antimicrobial peptides (AMP) intended for the treatment of wounds infected with drug-resistant, biofilm-forming bacteria. The peptides tested are variants of an evolved AMP called d-amino acid CONsensus with Glycine Absent (d-CONGA), which has excellent antimicrobial activities in vitro and in vivo. In this newest generation of rational d-CONGA variants, we tested multiple sequence-structure-function hypotheses that had not been tested in previous generations. Many of the peptide variants have lower antibacterial activity against Gram-positive or Gram-negative pathogens, especially variants that have altered hydrophobicity, secondary structure potential, or spatial distribution of charged and hydrophobic residues. Thus, d-CONGA is generally well tuned for antimicrobial activity. However, we identified a variant, d-CONGA-Q7, with a polar glutamine inserted into the middle of the sequence, that has higher activity against both planktonic and biofilm-forming bacteria as well as lower cytotoxicity against human fibroblasts. Against clinical isolates of Klebsiella pneumoniae, innate resistance to d-CONGA was surprisingly common despite a lack of inducible resistance in Pseudomonas aeruginosa reported previously. Yet, these same isolates were susceptible to d-CONGA-Q7. d-CONGA-Q7 is much less vulnerable to AMP resistance in Gram-negative bacteria than its predecessor. Consistent with the spirit of synthetic molecular evolution, d-CONGA-Q7 achieved a critical gain-of-function and has a significantly better activity profile. Fil: Ghimire, Jenisha. University of Tulane; Estados Unidos Fil: Hart, Robert J.. University of Tulane; Estados Unidos Fil: Soldano, Anabel. Louisiana Tech University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina Fil: Chen, Charles H.. Massachusetts Institute of Technology; Estados Unidos Fil: Guha, Shantanu. University of Tulane; Estados Unidos Fil: Hoffmann, Joseph P.. University of Tulane; Estados Unidos Fil: Hall, Kalen M.. University of Tulane; Estados Unidos Fil: Sun, Leisheng. University of Tulane; Estados Unidos Fil: Nelson, Benjamin J.. University of Tulane; Estados Unidos Fil: Lu, Timothy K.. Massachusetts Institute of Technology; Estados Unidos Fil: Kolls, Jay K.. University of Tulane; Estados Unidos Fil: Rivera, Mario. State University of Louisiana; Estados Unidos Fil: Morici, Lisa A.. University of Tulane; Estados Unidos Fil: Wimley, William C.. University of Tulane; Estados Unidos |
description |
Here, we describe the continued synthetic molecular evolution of a lineage of host-compatible antimicrobial peptides (AMP) intended for the treatment of wounds infected with drug-resistant, biofilm-forming bacteria. The peptides tested are variants of an evolved AMP called d-amino acid CONsensus with Glycine Absent (d-CONGA), which has excellent antimicrobial activities in vitro and in vivo. In this newest generation of rational d-CONGA variants, we tested multiple sequence-structure-function hypotheses that had not been tested in previous generations. Many of the peptide variants have lower antibacterial activity against Gram-positive or Gram-negative pathogens, especially variants that have altered hydrophobicity, secondary structure potential, or spatial distribution of charged and hydrophobic residues. Thus, d-CONGA is generally well tuned for antimicrobial activity. However, we identified a variant, d-CONGA-Q7, with a polar glutamine inserted into the middle of the sequence, that has higher activity against both planktonic and biofilm-forming bacteria as well as lower cytotoxicity against human fibroblasts. Against clinical isolates of Klebsiella pneumoniae, innate resistance to d-CONGA was surprisingly common despite a lack of inducible resistance in Pseudomonas aeruginosa reported previously. Yet, these same isolates were susceptible to d-CONGA-Q7. d-CONGA-Q7 is much less vulnerable to AMP resistance in Gram-negative bacteria than its predecessor. Consistent with the spirit of synthetic molecular evolution, d-CONGA-Q7 achieved a critical gain-of-function and has a significantly better activity profile. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/225743 Ghimire, Jenisha; Hart, Robert J.; Soldano, Anabel; Chen, Charles H.; Guha, Shantanu; et al.; Optimization of Host Cell-Compatible, Antimicrobial Peptides Effective against Biofilms and Clinical Isolates of Drug-Resistant Bacteria; American Chemical Society; ACS Infectious Diseases; 9; 4; 4-2023; 952-965 2373-8227 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/225743 |
identifier_str_mv |
Ghimire, Jenisha; Hart, Robert J.; Soldano, Anabel; Chen, Charles H.; Guha, Shantanu; et al.; Optimization of Host Cell-Compatible, Antimicrobial Peptides Effective against Biofilms and Clinical Isolates of Drug-Resistant Bacteria; American Chemical Society; ACS Infectious Diseases; 9; 4; 4-2023; 952-965 2373-8227 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1021/acsinfecdis.2c00640 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270164867874816 |
score |
13.13397 |