The 1/2 BPS Wilson loop in ABJ(M) at two loops: The details
- Autores
- Bianchi, Marco Andrés; Giribet, Gaston Enrique; Leoni Olivera, Matías; Penati, Silvia
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We compute the expectation value of the 1/2 BPS circular Wilson loop operator in ABJ(M) theory at two loops in perturbation theory. Our result turns out to be in exact agreement with the weak coupling limit of the prediction coming from localization, including finite N contributions associated to non-planar diagrams. It also confirms the identification of the correct framing factor that connects framing-zero and framingoneexpressions, previously proposed. The evaluation of the 1/2 BPS operator is made technically difficult in comparison with other observables of ABJ(M) theory by the appearance of integrals involving the coupling between fermions and gauge fields, which are absent for instance in the 1/6 BPS case. We describe in detail how to analytically solve these integrals in dimensional regularization with dimensional reduction (DRED). By suitably performing the physical limit to three dimensions we clarify the role played by short distance divergences on the final result and the mechanism of their cancellation.
Fil: Bianchi, Marco Andrés. Universität zu Berlin; Alemania
Fil: Giribet, Gaston Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Leoni Olivera, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Penati, Silvia. Università degli Studi di Milano; Italia - Materia
-
CHERN-SIMONS THEORIES
MATRIX MODELS
WILSON 'T HOOFT AND POLYAKOV LOOPS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/85962
Ver los metadatos del registro completo
id |
CONICETDig_4964eb63d3330afe2b2642d47d35e695 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/85962 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The 1/2 BPS Wilson loop in ABJ(M) at two loops: The detailsBianchi, Marco AndrésGiribet, Gaston EnriqueLeoni Olivera, MatíasPenati, SilviaCHERN-SIMONS THEORIESMATRIX MODELSWILSON 'T HOOFT AND POLYAKOV LOOPShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We compute the expectation value of the 1/2 BPS circular Wilson loop operator in ABJ(M) theory at two loops in perturbation theory. Our result turns out to be in exact agreement with the weak coupling limit of the prediction coming from localization, including finite N contributions associated to non-planar diagrams. It also confirms the identification of the correct framing factor that connects framing-zero and framingoneexpressions, previously proposed. The evaluation of the 1/2 BPS operator is made technically difficult in comparison with other observables of ABJ(M) theory by the appearance of integrals involving the coupling between fermions and gauge fields, which are absent for instance in the 1/6 BPS case. We describe in detail how to analytically solve these integrals in dimensional regularization with dimensional reduction (DRED). By suitably performing the physical limit to three dimensions we clarify the role played by short distance divergences on the final result and the mechanism of their cancellation.Fil: Bianchi, Marco Andrés. Universität zu Berlin; AlemaniaFil: Giribet, Gaston Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Leoni Olivera, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Penati, Silvia. Università degli Studi di Milano; ItaliaSpringer2013-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/85962Bianchi, Marco Andrés; Giribet, Gaston Enrique; Leoni Olivera, Matías; Penati, Silvia; The 1/2 BPS Wilson loop in ABJ(M) at two loops: The details; Springer; Journal of High Energy Physics; 2013; 10; 10-2013; 1-541126-6708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP10(2013)085info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2FJHEP10%282013%29085info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1307.0786info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:10:59Zoai:ri.conicet.gov.ar:11336/85962instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:10:59.821CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The 1/2 BPS Wilson loop in ABJ(M) at two loops: The details |
title |
The 1/2 BPS Wilson loop in ABJ(M) at two loops: The details |
spellingShingle |
The 1/2 BPS Wilson loop in ABJ(M) at two loops: The details Bianchi, Marco Andrés CHERN-SIMONS THEORIES MATRIX MODELS WILSON 'T HOOFT AND POLYAKOV LOOPS |
title_short |
The 1/2 BPS Wilson loop in ABJ(M) at two loops: The details |
title_full |
The 1/2 BPS Wilson loop in ABJ(M) at two loops: The details |
title_fullStr |
The 1/2 BPS Wilson loop in ABJ(M) at two loops: The details |
title_full_unstemmed |
The 1/2 BPS Wilson loop in ABJ(M) at two loops: The details |
title_sort |
The 1/2 BPS Wilson loop in ABJ(M) at two loops: The details |
dc.creator.none.fl_str_mv |
Bianchi, Marco Andrés Giribet, Gaston Enrique Leoni Olivera, Matías Penati, Silvia |
author |
Bianchi, Marco Andrés |
author_facet |
Bianchi, Marco Andrés Giribet, Gaston Enrique Leoni Olivera, Matías Penati, Silvia |
author_role |
author |
author2 |
Giribet, Gaston Enrique Leoni Olivera, Matías Penati, Silvia |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
CHERN-SIMONS THEORIES MATRIX MODELS WILSON 'T HOOFT AND POLYAKOV LOOPS |
topic |
CHERN-SIMONS THEORIES MATRIX MODELS WILSON 'T HOOFT AND POLYAKOV LOOPS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We compute the expectation value of the 1/2 BPS circular Wilson loop operator in ABJ(M) theory at two loops in perturbation theory. Our result turns out to be in exact agreement with the weak coupling limit of the prediction coming from localization, including finite N contributions associated to non-planar diagrams. It also confirms the identification of the correct framing factor that connects framing-zero and framingoneexpressions, previously proposed. The evaluation of the 1/2 BPS operator is made technically difficult in comparison with other observables of ABJ(M) theory by the appearance of integrals involving the coupling between fermions and gauge fields, which are absent for instance in the 1/6 BPS case. We describe in detail how to analytically solve these integrals in dimensional regularization with dimensional reduction (DRED). By suitably performing the physical limit to three dimensions we clarify the role played by short distance divergences on the final result and the mechanism of their cancellation. Fil: Bianchi, Marco Andrés. Universität zu Berlin; Alemania Fil: Giribet, Gaston Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Leoni Olivera, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Penati, Silvia. Università degli Studi di Milano; Italia |
description |
We compute the expectation value of the 1/2 BPS circular Wilson loop operator in ABJ(M) theory at two loops in perturbation theory. Our result turns out to be in exact agreement with the weak coupling limit of the prediction coming from localization, including finite N contributions associated to non-planar diagrams. It also confirms the identification of the correct framing factor that connects framing-zero and framingoneexpressions, previously proposed. The evaluation of the 1/2 BPS operator is made technically difficult in comparison with other observables of ABJ(M) theory by the appearance of integrals involving the coupling between fermions and gauge fields, which are absent for instance in the 1/6 BPS case. We describe in detail how to analytically solve these integrals in dimensional regularization with dimensional reduction (DRED). By suitably performing the physical limit to three dimensions we clarify the role played by short distance divergences on the final result and the mechanism of their cancellation. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/85962 Bianchi, Marco Andrés; Giribet, Gaston Enrique; Leoni Olivera, Matías; Penati, Silvia; The 1/2 BPS Wilson loop in ABJ(M) at two loops: The details; Springer; Journal of High Energy Physics; 2013; 10; 10-2013; 1-54 1126-6708 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/85962 |
identifier_str_mv |
Bianchi, Marco Andrés; Giribet, Gaston Enrique; Leoni Olivera, Matías; Penati, Silvia; The 1/2 BPS Wilson loop in ABJ(M) at two loops: The details; Springer; Journal of High Energy Physics; 2013; 10; 10-2013; 1-54 1126-6708 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP10(2013)085 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2FJHEP10%282013%29085 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1307.0786 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270140546154496 |
score |
13.13397 |