Keys for designing hematite/plasmonic metal hybrid nanostructures with enhanced photoactive properties
- Autores
- Encina, Ezequiel Roberto; Coronado, Eduardo A.
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Photoactive hybrid nanostructures composed of metal oxides and plasmonic metals are able to perform the conversion of radiant (solar) energy into electrical or chemical energy. However, their use in large-scale practical applications still requires their photoconversion efficiency to be improved. In this work, the light-harvesting properties of hematite/plasmonic metal rodlike hybrid nanostructures are investigated on the basis of discrete dipole approximation simulations. The effects of the length and nature of the metallic counterpart on the far- and near-field optical properties of the hybrid nanostructure are analyzed in detail. The implemented methodology allowed us to assess the contribution of each component of the hybrid nanostructure to the absorption efficiency, Qabs, separately. In turn, the Qabs values obtained were employed to determine the absorbed photon flux, ø, within the α-Fe2O3 component, a relevant quantity directly related to the photoconversion efficiency. It was found that both absorption efficiency Qabs and absorbed photon flux ø can be largely enhanced through a proper selection of the length and nature of the metallic counterpart of the nanostructure, evidencing plasmon-enhanced light absorption in the α-Fe2O3 component, which is attributed to a plasmon-induced energy transfer mechanism based on near-field enhancements. Importantly, it was found that the highest ø values achieved for nanostructures composed of Ag and Al (∼11 × 1016 photons cm-2 s-1) are nearly 3 times larger than those corresponding to nanostructures composed of Au (∼4 × 1016 photons cm-2 s-1). In addition, a direct relationship between the absorbed photon flux, ø, and optical characteristics of the nanostructures, that is, the bandgap energy of α-Fe2O3 and the energy and radiative line width of the localized surface plasmon resonance, was empirically obtained. Such a relationship not only complements but also overcomes the limitations of the reported useful criteria and provides helpful guidelines for the optimum design of hybrid nanostructures with enhanced photoactive properties.
Fil: Encina, Ezequiel Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Coronado, Eduardo A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina - Materia
-
Hybrid nanostructures
Optical properties
Near field
Absorption enhancement - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/135491
Ver los metadatos del registro completo
| id |
CONICETDig_49447b33128d2306e18a9e6558ce067d |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/135491 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Keys for designing hematite/plasmonic metal hybrid nanostructures with enhanced photoactive propertiesEncina, Ezequiel RobertoCoronado, Eduardo A.Hybrid nanostructuresOptical propertiesNear fieldAbsorption enhancementhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Photoactive hybrid nanostructures composed of metal oxides and plasmonic metals are able to perform the conversion of radiant (solar) energy into electrical or chemical energy. However, their use in large-scale practical applications still requires their photoconversion efficiency to be improved. In this work, the light-harvesting properties of hematite/plasmonic metal rodlike hybrid nanostructures are investigated on the basis of discrete dipole approximation simulations. The effects of the length and nature of the metallic counterpart on the far- and near-field optical properties of the hybrid nanostructure are analyzed in detail. The implemented methodology allowed us to assess the contribution of each component of the hybrid nanostructure to the absorption efficiency, Qabs, separately. In turn, the Qabs values obtained were employed to determine the absorbed photon flux, ø, within the α-Fe2O3 component, a relevant quantity directly related to the photoconversion efficiency. It was found that both absorption efficiency Qabs and absorbed photon flux ø can be largely enhanced through a proper selection of the length and nature of the metallic counterpart of the nanostructure, evidencing plasmon-enhanced light absorption in the α-Fe2O3 component, which is attributed to a plasmon-induced energy transfer mechanism based on near-field enhancements. Importantly, it was found that the highest ø values achieved for nanostructures composed of Ag and Al (∼11 × 1016 photons cm-2 s-1) are nearly 3 times larger than those corresponding to nanostructures composed of Au (∼4 × 1016 photons cm-2 s-1). In addition, a direct relationship between the absorbed photon flux, ø, and optical characteristics of the nanostructures, that is, the bandgap energy of α-Fe2O3 and the energy and radiative line width of the localized surface plasmon resonance, was empirically obtained. Such a relationship not only complements but also overcomes the limitations of the reported useful criteria and provides helpful guidelines for the optimum design of hybrid nanostructures with enhanced photoactive properties.Fil: Encina, Ezequiel Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Coronado, Eduardo A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaAmerican Chemical Society2018-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/135491Encina, Ezequiel Roberto; Coronado, Eduardo A.; Keys for designing hematite/plasmonic metal hybrid nanostructures with enhanced photoactive properties; American Chemical Society; Journal of Physical Chemistry C; 122; 8; 3-2018; 4589-45991932-74471932-7455CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jpcc.7b12486info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.7b12486info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T13:12:17Zoai:ri.conicet.gov.ar:11336/135491instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 13:12:17.414CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Keys for designing hematite/plasmonic metal hybrid nanostructures with enhanced photoactive properties |
| title |
Keys for designing hematite/plasmonic metal hybrid nanostructures with enhanced photoactive properties |
| spellingShingle |
Keys for designing hematite/plasmonic metal hybrid nanostructures with enhanced photoactive properties Encina, Ezequiel Roberto Hybrid nanostructures Optical properties Near field Absorption enhancement |
| title_short |
Keys for designing hematite/plasmonic metal hybrid nanostructures with enhanced photoactive properties |
| title_full |
Keys for designing hematite/plasmonic metal hybrid nanostructures with enhanced photoactive properties |
| title_fullStr |
Keys for designing hematite/plasmonic metal hybrid nanostructures with enhanced photoactive properties |
| title_full_unstemmed |
Keys for designing hematite/plasmonic metal hybrid nanostructures with enhanced photoactive properties |
| title_sort |
Keys for designing hematite/plasmonic metal hybrid nanostructures with enhanced photoactive properties |
| dc.creator.none.fl_str_mv |
Encina, Ezequiel Roberto Coronado, Eduardo A. |
| author |
Encina, Ezequiel Roberto |
| author_facet |
Encina, Ezequiel Roberto Coronado, Eduardo A. |
| author_role |
author |
| author2 |
Coronado, Eduardo A. |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Hybrid nanostructures Optical properties Near field Absorption enhancement |
| topic |
Hybrid nanostructures Optical properties Near field Absorption enhancement |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Photoactive hybrid nanostructures composed of metal oxides and plasmonic metals are able to perform the conversion of radiant (solar) energy into electrical or chemical energy. However, their use in large-scale practical applications still requires their photoconversion efficiency to be improved. In this work, the light-harvesting properties of hematite/plasmonic metal rodlike hybrid nanostructures are investigated on the basis of discrete dipole approximation simulations. The effects of the length and nature of the metallic counterpart on the far- and near-field optical properties of the hybrid nanostructure are analyzed in detail. The implemented methodology allowed us to assess the contribution of each component of the hybrid nanostructure to the absorption efficiency, Qabs, separately. In turn, the Qabs values obtained were employed to determine the absorbed photon flux, ø, within the α-Fe2O3 component, a relevant quantity directly related to the photoconversion efficiency. It was found that both absorption efficiency Qabs and absorbed photon flux ø can be largely enhanced through a proper selection of the length and nature of the metallic counterpart of the nanostructure, evidencing plasmon-enhanced light absorption in the α-Fe2O3 component, which is attributed to a plasmon-induced energy transfer mechanism based on near-field enhancements. Importantly, it was found that the highest ø values achieved for nanostructures composed of Ag and Al (∼11 × 1016 photons cm-2 s-1) are nearly 3 times larger than those corresponding to nanostructures composed of Au (∼4 × 1016 photons cm-2 s-1). In addition, a direct relationship between the absorbed photon flux, ø, and optical characteristics of the nanostructures, that is, the bandgap energy of α-Fe2O3 and the energy and radiative line width of the localized surface plasmon resonance, was empirically obtained. Such a relationship not only complements but also overcomes the limitations of the reported useful criteria and provides helpful guidelines for the optimum design of hybrid nanostructures with enhanced photoactive properties. Fil: Encina, Ezequiel Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina Fil: Coronado, Eduardo A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina |
| description |
Photoactive hybrid nanostructures composed of metal oxides and plasmonic metals are able to perform the conversion of radiant (solar) energy into electrical or chemical energy. However, their use in large-scale practical applications still requires their photoconversion efficiency to be improved. In this work, the light-harvesting properties of hematite/plasmonic metal rodlike hybrid nanostructures are investigated on the basis of discrete dipole approximation simulations. The effects of the length and nature of the metallic counterpart on the far- and near-field optical properties of the hybrid nanostructure are analyzed in detail. The implemented methodology allowed us to assess the contribution of each component of the hybrid nanostructure to the absorption efficiency, Qabs, separately. In turn, the Qabs values obtained were employed to determine the absorbed photon flux, ø, within the α-Fe2O3 component, a relevant quantity directly related to the photoconversion efficiency. It was found that both absorption efficiency Qabs and absorbed photon flux ø can be largely enhanced through a proper selection of the length and nature of the metallic counterpart of the nanostructure, evidencing plasmon-enhanced light absorption in the α-Fe2O3 component, which is attributed to a plasmon-induced energy transfer mechanism based on near-field enhancements. Importantly, it was found that the highest ø values achieved for nanostructures composed of Ag and Al (∼11 × 1016 photons cm-2 s-1) are nearly 3 times larger than those corresponding to nanostructures composed of Au (∼4 × 1016 photons cm-2 s-1). In addition, a direct relationship between the absorbed photon flux, ø, and optical characteristics of the nanostructures, that is, the bandgap energy of α-Fe2O3 and the energy and radiative line width of the localized surface plasmon resonance, was empirically obtained. Such a relationship not only complements but also overcomes the limitations of the reported useful criteria and provides helpful guidelines for the optimum design of hybrid nanostructures with enhanced photoactive properties. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/135491 Encina, Ezequiel Roberto; Coronado, Eduardo A.; Keys for designing hematite/plasmonic metal hybrid nanostructures with enhanced photoactive properties; American Chemical Society; Journal of Physical Chemistry C; 122; 8; 3-2018; 4589-4599 1932-7447 1932-7455 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/135491 |
| identifier_str_mv |
Encina, Ezequiel Roberto; Coronado, Eduardo A.; Keys for designing hematite/plasmonic metal hybrid nanostructures with enhanced photoactive properties; American Chemical Society; Journal of Physical Chemistry C; 122; 8; 3-2018; 4589-4599 1932-7447 1932-7455 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jpcc.7b12486 info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.7b12486 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Chemical Society |
| publisher.none.fl_str_mv |
American Chemical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1852334912974094336 |
| score |
12.441415 |