The chopped moving photocarrier grating technique

Autores
Kopprio, Leonardo Hugo; Ventosinos, Federico; Schmidt, Javier Alejandro
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The Moving photocarrier Grating Technique (MGT) allows the simultaneous determination of the photocarrier drift mobilities and the small-signal recombination lifetime of photoconductive semiconductors. The technique measures the direct current (DC) induced by a monochromatic illumination consisting of a moving interference pattern superimposed on a uniform background of much higher intensity. A drawback of the technique is the low level of the signal to be measured, which can be masked by the noise at low temperatures or low light intensities. In this work, we propose implementing an alternating current (AC) version of the MGT by chopping the weak beam in the standard configuration. We call this new technique the Chopped Moving photocarrier Grating (CMG). In CMG, the AC signal can be measured with a lock-in amplifier for electrical noise removal. In this way, the signal-to-noise ratio can be increased compared to the standard DC technique. Assuming a multiple-trapping model for charge transport, we find the theoretical expression for the current density induced by CMG at fundamental frequency. By using a numerical simulation with parameters typical for hydrogenated amorphous silicon, we verify the expected equivalence between both techniques for low enough chopping frequencies. Then, we test experimentally this equivalence for an undoped hydrogenated amorphous silicon sample. For low signal levels, we demonstrate the superior performance of CMG.
Fil: Kopprio, Leonardo Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina
Fil: Ventosinos, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina
Fil: Schmidt, Javier Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina
Materia
PHOTOCONDUCTIVITY
MOVING-GRATING
CHOPPED
TRANSPORT
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/111293

id CONICETDig_490a09081a428a5dfc13c2dea61558a6
oai_identifier_str oai:ri.conicet.gov.ar:11336/111293
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The chopped moving photocarrier grating techniqueKopprio, Leonardo HugoVentosinos, FedericoSchmidt, Javier AlejandroPHOTOCONDUCTIVITYMOVING-GRATINGCHOPPEDTRANSPORThttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The Moving photocarrier Grating Technique (MGT) allows the simultaneous determination of the photocarrier drift mobilities and the small-signal recombination lifetime of photoconductive semiconductors. The technique measures the direct current (DC) induced by a monochromatic illumination consisting of a moving interference pattern superimposed on a uniform background of much higher intensity. A drawback of the technique is the low level of the signal to be measured, which can be masked by the noise at low temperatures or low light intensities. In this work, we propose implementing an alternating current (AC) version of the MGT by chopping the weak beam in the standard configuration. We call this new technique the Chopped Moving photocarrier Grating (CMG). In CMG, the AC signal can be measured with a lock-in amplifier for electrical noise removal. In this way, the signal-to-noise ratio can be increased compared to the standard DC technique. Assuming a multiple-trapping model for charge transport, we find the theoretical expression for the current density induced by CMG at fundamental frequency. By using a numerical simulation with parameters typical for hydrogenated amorphous silicon, we verify the expected equivalence between both techniques for low enough chopping frequencies. Then, we test experimentally this equivalence for an undoped hydrogenated amorphous silicon sample. For low signal levels, we demonstrate the superior performance of CMG.Fil: Kopprio, Leonardo Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; ArgentinaFil: Ventosinos, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; ArgentinaFil: Schmidt, Javier Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; ArgentinaAmerican Institute of Physics2019-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/111293Kopprio, Leonardo Hugo; Ventosinos, Federico; Schmidt, Javier Alejandro; The chopped moving photocarrier grating technique; American Institute of Physics; Review of Scientific Instruments; 90; 12; 12-2019; 1239021-12390290034-6748CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.5117232info:eu-repo/semantics/altIdentifier/doi/10.1063/1.5117232info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:35:16Zoai:ri.conicet.gov.ar:11336/111293instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:35:17.016CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The chopped moving photocarrier grating technique
title The chopped moving photocarrier grating technique
spellingShingle The chopped moving photocarrier grating technique
Kopprio, Leonardo Hugo
PHOTOCONDUCTIVITY
MOVING-GRATING
CHOPPED
TRANSPORT
title_short The chopped moving photocarrier grating technique
title_full The chopped moving photocarrier grating technique
title_fullStr The chopped moving photocarrier grating technique
title_full_unstemmed The chopped moving photocarrier grating technique
title_sort The chopped moving photocarrier grating technique
dc.creator.none.fl_str_mv Kopprio, Leonardo Hugo
Ventosinos, Federico
Schmidt, Javier Alejandro
author Kopprio, Leonardo Hugo
author_facet Kopprio, Leonardo Hugo
Ventosinos, Federico
Schmidt, Javier Alejandro
author_role author
author2 Ventosinos, Federico
Schmidt, Javier Alejandro
author2_role author
author
dc.subject.none.fl_str_mv PHOTOCONDUCTIVITY
MOVING-GRATING
CHOPPED
TRANSPORT
topic PHOTOCONDUCTIVITY
MOVING-GRATING
CHOPPED
TRANSPORT
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The Moving photocarrier Grating Technique (MGT) allows the simultaneous determination of the photocarrier drift mobilities and the small-signal recombination lifetime of photoconductive semiconductors. The technique measures the direct current (DC) induced by a monochromatic illumination consisting of a moving interference pattern superimposed on a uniform background of much higher intensity. A drawback of the technique is the low level of the signal to be measured, which can be masked by the noise at low temperatures or low light intensities. In this work, we propose implementing an alternating current (AC) version of the MGT by chopping the weak beam in the standard configuration. We call this new technique the Chopped Moving photocarrier Grating (CMG). In CMG, the AC signal can be measured with a lock-in amplifier for electrical noise removal. In this way, the signal-to-noise ratio can be increased compared to the standard DC technique. Assuming a multiple-trapping model for charge transport, we find the theoretical expression for the current density induced by CMG at fundamental frequency. By using a numerical simulation with parameters typical for hydrogenated amorphous silicon, we verify the expected equivalence between both techniques for low enough chopping frequencies. Then, we test experimentally this equivalence for an undoped hydrogenated amorphous silicon sample. For low signal levels, we demonstrate the superior performance of CMG.
Fil: Kopprio, Leonardo Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina
Fil: Ventosinos, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina
Fil: Schmidt, Javier Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina
description The Moving photocarrier Grating Technique (MGT) allows the simultaneous determination of the photocarrier drift mobilities and the small-signal recombination lifetime of photoconductive semiconductors. The technique measures the direct current (DC) induced by a monochromatic illumination consisting of a moving interference pattern superimposed on a uniform background of much higher intensity. A drawback of the technique is the low level of the signal to be measured, which can be masked by the noise at low temperatures or low light intensities. In this work, we propose implementing an alternating current (AC) version of the MGT by chopping the weak beam in the standard configuration. We call this new technique the Chopped Moving photocarrier Grating (CMG). In CMG, the AC signal can be measured with a lock-in amplifier for electrical noise removal. In this way, the signal-to-noise ratio can be increased compared to the standard DC technique. Assuming a multiple-trapping model for charge transport, we find the theoretical expression for the current density induced by CMG at fundamental frequency. By using a numerical simulation with parameters typical for hydrogenated amorphous silicon, we verify the expected equivalence between both techniques for low enough chopping frequencies. Then, we test experimentally this equivalence for an undoped hydrogenated amorphous silicon sample. For low signal levels, we demonstrate the superior performance of CMG.
publishDate 2019
dc.date.none.fl_str_mv 2019-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/111293
Kopprio, Leonardo Hugo; Ventosinos, Federico; Schmidt, Javier Alejandro; The chopped moving photocarrier grating technique; American Institute of Physics; Review of Scientific Instruments; 90; 12; 12-2019; 1239021-1239029
0034-6748
CONICET Digital
CONICET
url http://hdl.handle.net/11336/111293
identifier_str_mv Kopprio, Leonardo Hugo; Ventosinos, Federico; Schmidt, Javier Alejandro; The chopped moving photocarrier grating technique; American Institute of Physics; Review of Scientific Instruments; 90; 12; 12-2019; 1239021-1239029
0034-6748
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.5117232
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.5117232
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614370593603584
score 13.070432