Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives

Autores
Bellosta von Colbe, Jose; Ares Fernández, José Ramón; Jussara, Barale; Baricco, Marcello; Buckley, Craig E.; Capurso, Giovanni; Gallandat, Noris; Grant, David M.; Guzik, Matylda N.; Jacob, Isaac; Jensen, Emil H.; Jensen, Torben; Jepsen, Julian; Klassen, Thomas; Lototskyy, Mykhaylol V.; Manickam, Kandavel; Montone, Amelia; Puszkiel, Julián Atilio; Sartori, Sabrina; Sheppard, Drew A.; Stuart, Alastair; Walker, Gavin; Webb, Colin J.; Yang, Heena; Yartys, Volodymyr; Züttel, Andreas; Dornheim, Martin
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Metal hydrides are known as a potential efficient, low-risk option for high-density hydrogen storage since the late 1970s. In this paper, the present status and the future perspectives of the use of metal hydrides for hydrogen storage are discussed. Since the early 1990s, interstitial metal hydrides are known as base materials for Ni – metal hydride rechargeable batteries. For hydrogen storage, metal hydride systems have been developed in the 2010s [1] for use in emergency or backup power units, i. e. for stationary applications. With the development and completion of the first submarines of the U212 A series by HDW (now Thyssen Krupp Marine Systems) in 2003 and its export class U214 in 2004, the use of metal hydrides for hydrogen storage in mobile applications has been established, with new application fields coming into focus. In the last decades, a huge number of new intermetallic and partially covalent hydrogen absorbing compounds has been identified and partly more, partly less extensively characterized. In addition, based on the thermodynamic properties of metal hydrides, this class of materials gives the opportunity to develop a new hydrogen compression technology. They allow the direct conversion from thermal energy into the compression of hydrogen gas without the need of any moving parts. Such compressors have been developed and are nowadays commercially available for pressures up to 200 bar. Metal hydride based compressors for higher pressures are under development. Moreover, storage systems consisting of the combination of metal hydrides and high-pressure vessels have been proposed as a realistic solution for on-board hydrogen storage on fuel cell vehicles. In the frame of the “Hydrogen Storage Systems for Mobile and Stationary Applications” Group in the International Energy Agency (IEA) Hydrogen Task 32 “Hydrogen-based energy storage”, different compounds have been and will be scaled-up in the near future and tested in the range of 500 g to several hundred kg for use in hydrogen storage applications.
Fil: Bellosta von Colbe, Jose. Helmholtz-Zentrum Geesthacht; Alemania
Fil: Ares Fernández, José Ramón. Universidad Autónoma de Madrid; España
Fil: Jussara, Barale. Università di Torino; Italia
Fil: Baricco, Marcello. Università di Torino; Italia
Fil: Buckley, Craig E.. Curtin University; Australia
Fil: Capurso, Giovanni. Helmholtz Zentrum Geesthacht; Alemania
Fil: Gallandat, Noris. GRZ Technologies Ltd; Suiza
Fil: Grant, David M.. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido. University of Nottingham; Estados Unidos
Fil: Guzik, Matylda N.. University of Oslo; Noruega
Fil: Jacob, Isaac. Ben Gurion University of the Negev; Israel
Fil: Jensen, Emil H.. University of Oslo; Noruega
Fil: Jensen, Torben. University Aarhus; Dinamarca
Fil: Jepsen, Julian. Helmholtz Zentrum Geesthacht; Alemania
Fil: Klassen, Thomas. Helmholtz Zentrum Geesthacht; Alemania
Fil: Lototskyy, Mykhaylol V.. University of Cape Town; Sudáfrica
Fil: Manickam, Kandavel. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido
Fil: Montone, Amelia. Casaccia Research Centre; Italia
Fil: Puszkiel, Julián Atilio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Helmholtz Zentrum Geesthacht; Alemania
Fil: Sartori, Sabrina. University of Oslo; Noruega
Fil: Sheppard, Drew A.. Curtin University; Australia
Fil: Stuart, Alastair. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido
Fil: Walker, Gavin. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido
Fil: Webb, Colin J.. Griffith University; Australia
Fil: Yang, Heena. Empa Materials Science & Technology; Suiza. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Yartys, Volodymyr. Institute for Energy Technology; Noruega
Fil: Züttel, Andreas. Empa Materials Science & Technology; Suiza. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Dornheim, Martin. Helmholtz Zentrum Geesthacht; Alemania
Materia
HYDROGEN STORAGE
HYDROGEN COMPRESSION
METAL HYDRIDES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/124429

id CONICETDig_48e643098a8faabd5937736ce9e0c9b9
oai_identifier_str oai:ri.conicet.gov.ar:11336/124429
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectivesBellosta von Colbe, JoseAres Fernández, José RamónJussara, BaraleBaricco, MarcelloBuckley, Craig E.Capurso, GiovanniGallandat, NorisGrant, David M.Guzik, Matylda N.Jacob, IsaacJensen, Emil H.Jensen, TorbenJepsen, JulianKlassen, ThomasLototskyy, Mykhaylol V.Manickam, KandavelMontone, AmeliaPuszkiel, Julián AtilioSartori, SabrinaSheppard, Drew A.Stuart, AlastairWalker, GavinWebb, Colin J.Yang, HeenaYartys, VolodymyrZüttel, AndreasDornheim, MartinHYDROGEN STORAGEHYDROGEN COMPRESSIONMETAL HYDRIDEShttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Metal hydrides are known as a potential efficient, low-risk option for high-density hydrogen storage since the late 1970s. In this paper, the present status and the future perspectives of the use of metal hydrides for hydrogen storage are discussed. Since the early 1990s, interstitial metal hydrides are known as base materials for Ni – metal hydride rechargeable batteries. For hydrogen storage, metal hydride systems have been developed in the 2010s [1] for use in emergency or backup power units, i. e. for stationary applications. With the development and completion of the first submarines of the U212 A series by HDW (now Thyssen Krupp Marine Systems) in 2003 and its export class U214 in 2004, the use of metal hydrides for hydrogen storage in mobile applications has been established, with new application fields coming into focus. In the last decades, a huge number of new intermetallic and partially covalent hydrogen absorbing compounds has been identified and partly more, partly less extensively characterized. In addition, based on the thermodynamic properties of metal hydrides, this class of materials gives the opportunity to develop a new hydrogen compression technology. They allow the direct conversion from thermal energy into the compression of hydrogen gas without the need of any moving parts. Such compressors have been developed and are nowadays commercially available for pressures up to 200 bar. Metal hydride based compressors for higher pressures are under development. Moreover, storage systems consisting of the combination of metal hydrides and high-pressure vessels have been proposed as a realistic solution for on-board hydrogen storage on fuel cell vehicles. In the frame of the “Hydrogen Storage Systems for Mobile and Stationary Applications” Group in the International Energy Agency (IEA) Hydrogen Task 32 “Hydrogen-based energy storage”, different compounds have been and will be scaled-up in the near future and tested in the range of 500 g to several hundred kg for use in hydrogen storage applications.Fil: Bellosta von Colbe, Jose. Helmholtz-Zentrum Geesthacht; AlemaniaFil: Ares Fernández, José Ramón. Universidad Autónoma de Madrid; EspañaFil: Jussara, Barale. Università di Torino; ItaliaFil: Baricco, Marcello. Università di Torino; ItaliaFil: Buckley, Craig E.. Curtin University; AustraliaFil: Capurso, Giovanni. Helmholtz Zentrum Geesthacht; AlemaniaFil: Gallandat, Noris. GRZ Technologies Ltd; SuizaFil: Grant, David M.. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido. University of Nottingham; Estados UnidosFil: Guzik, Matylda N.. University of Oslo; NoruegaFil: Jacob, Isaac. Ben Gurion University of the Negev; IsraelFil: Jensen, Emil H.. University of Oslo; NoruegaFil: Jensen, Torben. University Aarhus; DinamarcaFil: Jepsen, Julian. Helmholtz Zentrum Geesthacht; AlemaniaFil: Klassen, Thomas. Helmholtz Zentrum Geesthacht; AlemaniaFil: Lototskyy, Mykhaylol V.. University of Cape Town; SudáfricaFil: Manickam, Kandavel. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino UnidoFil: Montone, Amelia. Casaccia Research Centre; ItaliaFil: Puszkiel, Julián Atilio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Helmholtz Zentrum Geesthacht; AlemaniaFil: Sartori, Sabrina. University of Oslo; NoruegaFil: Sheppard, Drew A.. Curtin University; AustraliaFil: Stuart, Alastair. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino UnidoFil: Walker, Gavin. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino UnidoFil: Webb, Colin J.. Griffith University; AustraliaFil: Yang, Heena. Empa Materials Science & Technology; Suiza. École Polytechnique Fédérale de Lausanne; SuizaFil: Yartys, Volodymyr. Institute for Energy Technology; NoruegaFil: Züttel, Andreas. Empa Materials Science & Technology; Suiza. École Polytechnique Fédérale de Lausanne; SuizaFil: Dornheim, Martin. Helmholtz Zentrum Geesthacht; AlemaniaPergamon-Elsevier Science Ltd2019-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/124429Bellosta von Colbe, Jose; Ares Fernández, José Ramón; Jussara, Barale; Baricco, Marcello; Buckley, Craig E.; et al.; Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives; Pergamon-Elsevier Science Ltd; International Journal of Hydrogen Energy; 44; 15; 3-2019; 7780-78080360-3199CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijhydene.2019.01.104info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0360319919302368?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:59:16Zoai:ri.conicet.gov.ar:11336/124429instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:59:16.702CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives
title Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives
spellingShingle Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives
Bellosta von Colbe, Jose
HYDROGEN STORAGE
HYDROGEN COMPRESSION
METAL HYDRIDES
title_short Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives
title_full Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives
title_fullStr Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives
title_full_unstemmed Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives
title_sort Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives
dc.creator.none.fl_str_mv Bellosta von Colbe, Jose
Ares Fernández, José Ramón
Jussara, Barale
Baricco, Marcello
Buckley, Craig E.
Capurso, Giovanni
Gallandat, Noris
Grant, David M.
Guzik, Matylda N.
Jacob, Isaac
Jensen, Emil H.
Jensen, Torben
Jepsen, Julian
Klassen, Thomas
Lototskyy, Mykhaylol V.
Manickam, Kandavel
Montone, Amelia
Puszkiel, Julián Atilio
Sartori, Sabrina
Sheppard, Drew A.
Stuart, Alastair
Walker, Gavin
Webb, Colin J.
Yang, Heena
Yartys, Volodymyr
Züttel, Andreas
Dornheim, Martin
author Bellosta von Colbe, Jose
author_facet Bellosta von Colbe, Jose
Ares Fernández, José Ramón
Jussara, Barale
Baricco, Marcello
Buckley, Craig E.
Capurso, Giovanni
Gallandat, Noris
Grant, David M.
Guzik, Matylda N.
Jacob, Isaac
Jensen, Emil H.
Jensen, Torben
Jepsen, Julian
Klassen, Thomas
Lototskyy, Mykhaylol V.
Manickam, Kandavel
Montone, Amelia
Puszkiel, Julián Atilio
Sartori, Sabrina
Sheppard, Drew A.
Stuart, Alastair
Walker, Gavin
Webb, Colin J.
Yang, Heena
Yartys, Volodymyr
Züttel, Andreas
Dornheim, Martin
author_role author
author2 Ares Fernández, José Ramón
Jussara, Barale
Baricco, Marcello
Buckley, Craig E.
Capurso, Giovanni
Gallandat, Noris
Grant, David M.
Guzik, Matylda N.
Jacob, Isaac
Jensen, Emil H.
Jensen, Torben
Jepsen, Julian
Klassen, Thomas
Lototskyy, Mykhaylol V.
Manickam, Kandavel
Montone, Amelia
Puszkiel, Julián Atilio
Sartori, Sabrina
Sheppard, Drew A.
Stuart, Alastair
Walker, Gavin
Webb, Colin J.
Yang, Heena
Yartys, Volodymyr
Züttel, Andreas
Dornheim, Martin
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv HYDROGEN STORAGE
HYDROGEN COMPRESSION
METAL HYDRIDES
topic HYDROGEN STORAGE
HYDROGEN COMPRESSION
METAL HYDRIDES
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Metal hydrides are known as a potential efficient, low-risk option for high-density hydrogen storage since the late 1970s. In this paper, the present status and the future perspectives of the use of metal hydrides for hydrogen storage are discussed. Since the early 1990s, interstitial metal hydrides are known as base materials for Ni – metal hydride rechargeable batteries. For hydrogen storage, metal hydride systems have been developed in the 2010s [1] for use in emergency or backup power units, i. e. for stationary applications. With the development and completion of the first submarines of the U212 A series by HDW (now Thyssen Krupp Marine Systems) in 2003 and its export class U214 in 2004, the use of metal hydrides for hydrogen storage in mobile applications has been established, with new application fields coming into focus. In the last decades, a huge number of new intermetallic and partially covalent hydrogen absorbing compounds has been identified and partly more, partly less extensively characterized. In addition, based on the thermodynamic properties of metal hydrides, this class of materials gives the opportunity to develop a new hydrogen compression technology. They allow the direct conversion from thermal energy into the compression of hydrogen gas without the need of any moving parts. Such compressors have been developed and are nowadays commercially available for pressures up to 200 bar. Metal hydride based compressors for higher pressures are under development. Moreover, storage systems consisting of the combination of metal hydrides and high-pressure vessels have been proposed as a realistic solution for on-board hydrogen storage on fuel cell vehicles. In the frame of the “Hydrogen Storage Systems for Mobile and Stationary Applications” Group in the International Energy Agency (IEA) Hydrogen Task 32 “Hydrogen-based energy storage”, different compounds have been and will be scaled-up in the near future and tested in the range of 500 g to several hundred kg for use in hydrogen storage applications.
Fil: Bellosta von Colbe, Jose. Helmholtz-Zentrum Geesthacht; Alemania
Fil: Ares Fernández, José Ramón. Universidad Autónoma de Madrid; España
Fil: Jussara, Barale. Università di Torino; Italia
Fil: Baricco, Marcello. Università di Torino; Italia
Fil: Buckley, Craig E.. Curtin University; Australia
Fil: Capurso, Giovanni. Helmholtz Zentrum Geesthacht; Alemania
Fil: Gallandat, Noris. GRZ Technologies Ltd; Suiza
Fil: Grant, David M.. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido. University of Nottingham; Estados Unidos
Fil: Guzik, Matylda N.. University of Oslo; Noruega
Fil: Jacob, Isaac. Ben Gurion University of the Negev; Israel
Fil: Jensen, Emil H.. University of Oslo; Noruega
Fil: Jensen, Torben. University Aarhus; Dinamarca
Fil: Jepsen, Julian. Helmholtz Zentrum Geesthacht; Alemania
Fil: Klassen, Thomas. Helmholtz Zentrum Geesthacht; Alemania
Fil: Lototskyy, Mykhaylol V.. University of Cape Town; Sudáfrica
Fil: Manickam, Kandavel. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido
Fil: Montone, Amelia. Casaccia Research Centre; Italia
Fil: Puszkiel, Julián Atilio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Helmholtz Zentrum Geesthacht; Alemania
Fil: Sartori, Sabrina. University of Oslo; Noruega
Fil: Sheppard, Drew A.. Curtin University; Australia
Fil: Stuart, Alastair. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido
Fil: Walker, Gavin. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido
Fil: Webb, Colin J.. Griffith University; Australia
Fil: Yang, Heena. Empa Materials Science & Technology; Suiza. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Yartys, Volodymyr. Institute for Energy Technology; Noruega
Fil: Züttel, Andreas. Empa Materials Science & Technology; Suiza. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Dornheim, Martin. Helmholtz Zentrum Geesthacht; Alemania
description Metal hydrides are known as a potential efficient, low-risk option for high-density hydrogen storage since the late 1970s. In this paper, the present status and the future perspectives of the use of metal hydrides for hydrogen storage are discussed. Since the early 1990s, interstitial metal hydrides are known as base materials for Ni – metal hydride rechargeable batteries. For hydrogen storage, metal hydride systems have been developed in the 2010s [1] for use in emergency or backup power units, i. e. for stationary applications. With the development and completion of the first submarines of the U212 A series by HDW (now Thyssen Krupp Marine Systems) in 2003 and its export class U214 in 2004, the use of metal hydrides for hydrogen storage in mobile applications has been established, with new application fields coming into focus. In the last decades, a huge number of new intermetallic and partially covalent hydrogen absorbing compounds has been identified and partly more, partly less extensively characterized. In addition, based on the thermodynamic properties of metal hydrides, this class of materials gives the opportunity to develop a new hydrogen compression technology. They allow the direct conversion from thermal energy into the compression of hydrogen gas without the need of any moving parts. Such compressors have been developed and are nowadays commercially available for pressures up to 200 bar. Metal hydride based compressors for higher pressures are under development. Moreover, storage systems consisting of the combination of metal hydrides and high-pressure vessels have been proposed as a realistic solution for on-board hydrogen storage on fuel cell vehicles. In the frame of the “Hydrogen Storage Systems for Mobile and Stationary Applications” Group in the International Energy Agency (IEA) Hydrogen Task 32 “Hydrogen-based energy storage”, different compounds have been and will be scaled-up in the near future and tested in the range of 500 g to several hundred kg for use in hydrogen storage applications.
publishDate 2019
dc.date.none.fl_str_mv 2019-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/124429
Bellosta von Colbe, Jose; Ares Fernández, José Ramón; Jussara, Barale; Baricco, Marcello; Buckley, Craig E.; et al.; Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives; Pergamon-Elsevier Science Ltd; International Journal of Hydrogen Energy; 44; 15; 3-2019; 7780-7808
0360-3199
CONICET Digital
CONICET
url http://hdl.handle.net/11336/124429
identifier_str_mv Bellosta von Colbe, Jose; Ares Fernández, José Ramón; Jussara, Barale; Baricco, Marcello; Buckley, Craig E.; et al.; Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives; Pergamon-Elsevier Science Ltd; International Journal of Hydrogen Energy; 44; 15; 3-2019; 7780-7808
0360-3199
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijhydene.2019.01.104
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0360319919302368?via%3Dihub
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613760034013184
score 13.070432