Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives
- Autores
- Bellosta von Colbe, Jose; Ares Fernández, José Ramón; Jussara, Barale; Baricco, Marcello; Buckley, Craig E.; Capurso, Giovanni; Gallandat, Noris; Grant, David M.; Guzik, Matylda N.; Jacob, Isaac; Jensen, Emil H.; Jensen, Torben; Jepsen, Julian; Klassen, Thomas; Lototskyy, Mykhaylol V.; Manickam, Kandavel; Montone, Amelia; Puszkiel, Julián Atilio; Sartori, Sabrina; Sheppard, Drew A.; Stuart, Alastair; Walker, Gavin; Webb, Colin J.; Yang, Heena; Yartys, Volodymyr; Züttel, Andreas; Dornheim, Martin
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Metal hydrides are known as a potential efficient, low-risk option for high-density hydrogen storage since the late 1970s. In this paper, the present status and the future perspectives of the use of metal hydrides for hydrogen storage are discussed. Since the early 1990s, interstitial metal hydrides are known as base materials for Ni – metal hydride rechargeable batteries. For hydrogen storage, metal hydride systems have been developed in the 2010s [1] for use in emergency or backup power units, i. e. for stationary applications. With the development and completion of the first submarines of the U212 A series by HDW (now Thyssen Krupp Marine Systems) in 2003 and its export class U214 in 2004, the use of metal hydrides for hydrogen storage in mobile applications has been established, with new application fields coming into focus. In the last decades, a huge number of new intermetallic and partially covalent hydrogen absorbing compounds has been identified and partly more, partly less extensively characterized. In addition, based on the thermodynamic properties of metal hydrides, this class of materials gives the opportunity to develop a new hydrogen compression technology. They allow the direct conversion from thermal energy into the compression of hydrogen gas without the need of any moving parts. Such compressors have been developed and are nowadays commercially available for pressures up to 200 bar. Metal hydride based compressors for higher pressures are under development. Moreover, storage systems consisting of the combination of metal hydrides and high-pressure vessels have been proposed as a realistic solution for on-board hydrogen storage on fuel cell vehicles. In the frame of the “Hydrogen Storage Systems for Mobile and Stationary Applications” Group in the International Energy Agency (IEA) Hydrogen Task 32 “Hydrogen-based energy storage”, different compounds have been and will be scaled-up in the near future and tested in the range of 500 g to several hundred kg for use in hydrogen storage applications.
Fil: Bellosta von Colbe, Jose. Helmholtz-Zentrum Geesthacht; Alemania
Fil: Ares Fernández, José Ramón. Universidad Autónoma de Madrid; España
Fil: Jussara, Barale. Università di Torino; Italia
Fil: Baricco, Marcello. Università di Torino; Italia
Fil: Buckley, Craig E.. Curtin University; Australia
Fil: Capurso, Giovanni. Helmholtz Zentrum Geesthacht; Alemania
Fil: Gallandat, Noris. GRZ Technologies Ltd; Suiza
Fil: Grant, David M.. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido. University of Nottingham; Estados Unidos
Fil: Guzik, Matylda N.. University of Oslo; Noruega
Fil: Jacob, Isaac. Ben Gurion University of the Negev; Israel
Fil: Jensen, Emil H.. University of Oslo; Noruega
Fil: Jensen, Torben. University Aarhus; Dinamarca
Fil: Jepsen, Julian. Helmholtz Zentrum Geesthacht; Alemania
Fil: Klassen, Thomas. Helmholtz Zentrum Geesthacht; Alemania
Fil: Lototskyy, Mykhaylol V.. University of Cape Town; Sudáfrica
Fil: Manickam, Kandavel. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido
Fil: Montone, Amelia. Casaccia Research Centre; Italia
Fil: Puszkiel, Julián Atilio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Helmholtz Zentrum Geesthacht; Alemania
Fil: Sartori, Sabrina. University of Oslo; Noruega
Fil: Sheppard, Drew A.. Curtin University; Australia
Fil: Stuart, Alastair. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido
Fil: Walker, Gavin. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido
Fil: Webb, Colin J.. Griffith University; Australia
Fil: Yang, Heena. Empa Materials Science & Technology; Suiza. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Yartys, Volodymyr. Institute for Energy Technology; Noruega
Fil: Züttel, Andreas. Empa Materials Science & Technology; Suiza. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Dornheim, Martin. Helmholtz Zentrum Geesthacht; Alemania - Materia
-
HYDROGEN STORAGE
HYDROGEN COMPRESSION
METAL HYDRIDES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/124429
Ver los metadatos del registro completo
id |
CONICETDig_48e643098a8faabd5937736ce9e0c9b9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/124429 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectivesBellosta von Colbe, JoseAres Fernández, José RamónJussara, BaraleBaricco, MarcelloBuckley, Craig E.Capurso, GiovanniGallandat, NorisGrant, David M.Guzik, Matylda N.Jacob, IsaacJensen, Emil H.Jensen, TorbenJepsen, JulianKlassen, ThomasLototskyy, Mykhaylol V.Manickam, KandavelMontone, AmeliaPuszkiel, Julián AtilioSartori, SabrinaSheppard, Drew A.Stuart, AlastairWalker, GavinWebb, Colin J.Yang, HeenaYartys, VolodymyrZüttel, AndreasDornheim, MartinHYDROGEN STORAGEHYDROGEN COMPRESSIONMETAL HYDRIDEShttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Metal hydrides are known as a potential efficient, low-risk option for high-density hydrogen storage since the late 1970s. In this paper, the present status and the future perspectives of the use of metal hydrides for hydrogen storage are discussed. Since the early 1990s, interstitial metal hydrides are known as base materials for Ni – metal hydride rechargeable batteries. For hydrogen storage, metal hydride systems have been developed in the 2010s [1] for use in emergency or backup power units, i. e. for stationary applications. With the development and completion of the first submarines of the U212 A series by HDW (now Thyssen Krupp Marine Systems) in 2003 and its export class U214 in 2004, the use of metal hydrides for hydrogen storage in mobile applications has been established, with new application fields coming into focus. In the last decades, a huge number of new intermetallic and partially covalent hydrogen absorbing compounds has been identified and partly more, partly less extensively characterized. In addition, based on the thermodynamic properties of metal hydrides, this class of materials gives the opportunity to develop a new hydrogen compression technology. They allow the direct conversion from thermal energy into the compression of hydrogen gas without the need of any moving parts. Such compressors have been developed and are nowadays commercially available for pressures up to 200 bar. Metal hydride based compressors for higher pressures are under development. Moreover, storage systems consisting of the combination of metal hydrides and high-pressure vessels have been proposed as a realistic solution for on-board hydrogen storage on fuel cell vehicles. In the frame of the “Hydrogen Storage Systems for Mobile and Stationary Applications” Group in the International Energy Agency (IEA) Hydrogen Task 32 “Hydrogen-based energy storage”, different compounds have been and will be scaled-up in the near future and tested in the range of 500 g to several hundred kg for use in hydrogen storage applications.Fil: Bellosta von Colbe, Jose. Helmholtz-Zentrum Geesthacht; AlemaniaFil: Ares Fernández, José Ramón. Universidad Autónoma de Madrid; EspañaFil: Jussara, Barale. Università di Torino; ItaliaFil: Baricco, Marcello. Università di Torino; ItaliaFil: Buckley, Craig E.. Curtin University; AustraliaFil: Capurso, Giovanni. Helmholtz Zentrum Geesthacht; AlemaniaFil: Gallandat, Noris. GRZ Technologies Ltd; SuizaFil: Grant, David M.. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido. University of Nottingham; Estados UnidosFil: Guzik, Matylda N.. University of Oslo; NoruegaFil: Jacob, Isaac. Ben Gurion University of the Negev; IsraelFil: Jensen, Emil H.. University of Oslo; NoruegaFil: Jensen, Torben. University Aarhus; DinamarcaFil: Jepsen, Julian. Helmholtz Zentrum Geesthacht; AlemaniaFil: Klassen, Thomas. Helmholtz Zentrum Geesthacht; AlemaniaFil: Lototskyy, Mykhaylol V.. University of Cape Town; SudáfricaFil: Manickam, Kandavel. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino UnidoFil: Montone, Amelia. Casaccia Research Centre; ItaliaFil: Puszkiel, Julián Atilio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Helmholtz Zentrum Geesthacht; AlemaniaFil: Sartori, Sabrina. University of Oslo; NoruegaFil: Sheppard, Drew A.. Curtin University; AustraliaFil: Stuart, Alastair. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino UnidoFil: Walker, Gavin. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino UnidoFil: Webb, Colin J.. Griffith University; AustraliaFil: Yang, Heena. Empa Materials Science & Technology; Suiza. École Polytechnique Fédérale de Lausanne; SuizaFil: Yartys, Volodymyr. Institute for Energy Technology; NoruegaFil: Züttel, Andreas. Empa Materials Science & Technology; Suiza. École Polytechnique Fédérale de Lausanne; SuizaFil: Dornheim, Martin. Helmholtz Zentrum Geesthacht; AlemaniaPergamon-Elsevier Science Ltd2019-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/124429Bellosta von Colbe, Jose; Ares Fernández, José Ramón; Jussara, Barale; Baricco, Marcello; Buckley, Craig E.; et al.; Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives; Pergamon-Elsevier Science Ltd; International Journal of Hydrogen Energy; 44; 15; 3-2019; 7780-78080360-3199CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijhydene.2019.01.104info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0360319919302368?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:59:16Zoai:ri.conicet.gov.ar:11336/124429instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:59:16.702CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives |
title |
Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives |
spellingShingle |
Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives Bellosta von Colbe, Jose HYDROGEN STORAGE HYDROGEN COMPRESSION METAL HYDRIDES |
title_short |
Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives |
title_full |
Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives |
title_fullStr |
Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives |
title_full_unstemmed |
Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives |
title_sort |
Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives |
dc.creator.none.fl_str_mv |
Bellosta von Colbe, Jose Ares Fernández, José Ramón Jussara, Barale Baricco, Marcello Buckley, Craig E. Capurso, Giovanni Gallandat, Noris Grant, David M. Guzik, Matylda N. Jacob, Isaac Jensen, Emil H. Jensen, Torben Jepsen, Julian Klassen, Thomas Lototskyy, Mykhaylol V. Manickam, Kandavel Montone, Amelia Puszkiel, Julián Atilio Sartori, Sabrina Sheppard, Drew A. Stuart, Alastair Walker, Gavin Webb, Colin J. Yang, Heena Yartys, Volodymyr Züttel, Andreas Dornheim, Martin |
author |
Bellosta von Colbe, Jose |
author_facet |
Bellosta von Colbe, Jose Ares Fernández, José Ramón Jussara, Barale Baricco, Marcello Buckley, Craig E. Capurso, Giovanni Gallandat, Noris Grant, David M. Guzik, Matylda N. Jacob, Isaac Jensen, Emil H. Jensen, Torben Jepsen, Julian Klassen, Thomas Lototskyy, Mykhaylol V. Manickam, Kandavel Montone, Amelia Puszkiel, Julián Atilio Sartori, Sabrina Sheppard, Drew A. Stuart, Alastair Walker, Gavin Webb, Colin J. Yang, Heena Yartys, Volodymyr Züttel, Andreas Dornheim, Martin |
author_role |
author |
author2 |
Ares Fernández, José Ramón Jussara, Barale Baricco, Marcello Buckley, Craig E. Capurso, Giovanni Gallandat, Noris Grant, David M. Guzik, Matylda N. Jacob, Isaac Jensen, Emil H. Jensen, Torben Jepsen, Julian Klassen, Thomas Lototskyy, Mykhaylol V. Manickam, Kandavel Montone, Amelia Puszkiel, Julián Atilio Sartori, Sabrina Sheppard, Drew A. Stuart, Alastair Walker, Gavin Webb, Colin J. Yang, Heena Yartys, Volodymyr Züttel, Andreas Dornheim, Martin |
author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
HYDROGEN STORAGE HYDROGEN COMPRESSION METAL HYDRIDES |
topic |
HYDROGEN STORAGE HYDROGEN COMPRESSION METAL HYDRIDES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Metal hydrides are known as a potential efficient, low-risk option for high-density hydrogen storage since the late 1970s. In this paper, the present status and the future perspectives of the use of metal hydrides for hydrogen storage are discussed. Since the early 1990s, interstitial metal hydrides are known as base materials for Ni – metal hydride rechargeable batteries. For hydrogen storage, metal hydride systems have been developed in the 2010s [1] for use in emergency or backup power units, i. e. for stationary applications. With the development and completion of the first submarines of the U212 A series by HDW (now Thyssen Krupp Marine Systems) in 2003 and its export class U214 in 2004, the use of metal hydrides for hydrogen storage in mobile applications has been established, with new application fields coming into focus. In the last decades, a huge number of new intermetallic and partially covalent hydrogen absorbing compounds has been identified and partly more, partly less extensively characterized. In addition, based on the thermodynamic properties of metal hydrides, this class of materials gives the opportunity to develop a new hydrogen compression technology. They allow the direct conversion from thermal energy into the compression of hydrogen gas without the need of any moving parts. Such compressors have been developed and are nowadays commercially available for pressures up to 200 bar. Metal hydride based compressors for higher pressures are under development. Moreover, storage systems consisting of the combination of metal hydrides and high-pressure vessels have been proposed as a realistic solution for on-board hydrogen storage on fuel cell vehicles. In the frame of the “Hydrogen Storage Systems for Mobile and Stationary Applications” Group in the International Energy Agency (IEA) Hydrogen Task 32 “Hydrogen-based energy storage”, different compounds have been and will be scaled-up in the near future and tested in the range of 500 g to several hundred kg for use in hydrogen storage applications. Fil: Bellosta von Colbe, Jose. Helmholtz-Zentrum Geesthacht; Alemania Fil: Ares Fernández, José Ramón. Universidad Autónoma de Madrid; España Fil: Jussara, Barale. Università di Torino; Italia Fil: Baricco, Marcello. Università di Torino; Italia Fil: Buckley, Craig E.. Curtin University; Australia Fil: Capurso, Giovanni. Helmholtz Zentrum Geesthacht; Alemania Fil: Gallandat, Noris. GRZ Technologies Ltd; Suiza Fil: Grant, David M.. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido. University of Nottingham; Estados Unidos Fil: Guzik, Matylda N.. University of Oslo; Noruega Fil: Jacob, Isaac. Ben Gurion University of the Negev; Israel Fil: Jensen, Emil H.. University of Oslo; Noruega Fil: Jensen, Torben. University Aarhus; Dinamarca Fil: Jepsen, Julian. Helmholtz Zentrum Geesthacht; Alemania Fil: Klassen, Thomas. Helmholtz Zentrum Geesthacht; Alemania Fil: Lototskyy, Mykhaylol V.. University of Cape Town; Sudáfrica Fil: Manickam, Kandavel. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido Fil: Montone, Amelia. Casaccia Research Centre; Italia Fil: Puszkiel, Julián Atilio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Helmholtz Zentrum Geesthacht; Alemania Fil: Sartori, Sabrina. University of Oslo; Noruega Fil: Sheppard, Drew A.. Curtin University; Australia Fil: Stuart, Alastair. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido Fil: Walker, Gavin. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido Fil: Webb, Colin J.. Griffith University; Australia Fil: Yang, Heena. Empa Materials Science & Technology; Suiza. École Polytechnique Fédérale de Lausanne; Suiza Fil: Yartys, Volodymyr. Institute for Energy Technology; Noruega Fil: Züttel, Andreas. Empa Materials Science & Technology; Suiza. École Polytechnique Fédérale de Lausanne; Suiza Fil: Dornheim, Martin. Helmholtz Zentrum Geesthacht; Alemania |
description |
Metal hydrides are known as a potential efficient, low-risk option for high-density hydrogen storage since the late 1970s. In this paper, the present status and the future perspectives of the use of metal hydrides for hydrogen storage are discussed. Since the early 1990s, interstitial metal hydrides are known as base materials for Ni – metal hydride rechargeable batteries. For hydrogen storage, metal hydride systems have been developed in the 2010s [1] for use in emergency or backup power units, i. e. for stationary applications. With the development and completion of the first submarines of the U212 A series by HDW (now Thyssen Krupp Marine Systems) in 2003 and its export class U214 in 2004, the use of metal hydrides for hydrogen storage in mobile applications has been established, with new application fields coming into focus. In the last decades, a huge number of new intermetallic and partially covalent hydrogen absorbing compounds has been identified and partly more, partly less extensively characterized. In addition, based on the thermodynamic properties of metal hydrides, this class of materials gives the opportunity to develop a new hydrogen compression technology. They allow the direct conversion from thermal energy into the compression of hydrogen gas without the need of any moving parts. Such compressors have been developed and are nowadays commercially available for pressures up to 200 bar. Metal hydride based compressors for higher pressures are under development. Moreover, storage systems consisting of the combination of metal hydrides and high-pressure vessels have been proposed as a realistic solution for on-board hydrogen storage on fuel cell vehicles. In the frame of the “Hydrogen Storage Systems for Mobile and Stationary Applications” Group in the International Energy Agency (IEA) Hydrogen Task 32 “Hydrogen-based energy storage”, different compounds have been and will be scaled-up in the near future and tested in the range of 500 g to several hundred kg for use in hydrogen storage applications. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/124429 Bellosta von Colbe, Jose; Ares Fernández, José Ramón; Jussara, Barale; Baricco, Marcello; Buckley, Craig E.; et al.; Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives; Pergamon-Elsevier Science Ltd; International Journal of Hydrogen Energy; 44; 15; 3-2019; 7780-7808 0360-3199 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/124429 |
identifier_str_mv |
Bellosta von Colbe, Jose; Ares Fernández, José Ramón; Jussara, Barale; Baricco, Marcello; Buckley, Craig E.; et al.; Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives; Pergamon-Elsevier Science Ltd; International Journal of Hydrogen Energy; 44; 15; 3-2019; 7780-7808 0360-3199 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijhydene.2019.01.104 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0360319919302368?via%3Dihub |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613760034013184 |
score |
13.070432 |