Infalling clouds on to supermassive black hole binaries - II. Binary evolution and the final parsec problem
- Autores
- Goicovic, Felipe G.; Sesana, Alberto; Cuadra, Jorge; Stasyszyn, Federico Andres
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The formation of massive black hole binaries (MBHBs) is an unavoidable outcome of galaxy evolution via successive mergers. However, the mechanism that drives their orbital evolution from parsec separations down to the gravitationalwave dominated regime is poorly understood, and their final fate is still unclear. If such binaries are embedded in gas-rich and turbulent environments, as observed in remnants of galaxy mergers, the interactionwith gas clumps (such as molecular clouds)may efficiently drive their orbital evolution. Using numerical simulations, we test this hypothesis by studying the dynamical evolution of an equal mass, circular MBHB accreting infallingmolecular clouds.We investigate different orbital configurations,modelling a total of 13 systems to explore different possible impact parameters and relative inclinations of the cloud-binary encounter. We focus our study on the prompt, transient phase during the first few orbits when the dynamical evolution of the binary is fastest, finding that this evolution is dominated by the exchange of angular momentum through gas capture by the individual black holes and accretion. Building on these results, we construct a simple model for evolving an MBHB interacting with a sequence of clouds, which are randomly drawn from reasonable populations with different levels of anisotropy in their angular momenta distributions. We show that the binary efficiently evolves down to the gravitational wave emission regime within a few hundred million years, overcoming the 'final parsec' problem regardless of the stellar distribution.
Fil: Goicovic, Felipe G.. Pontificia Universidad Católica de Chile; Chile. Max-Planck-Institut für Gravitationsphysik; Alemania. Heidelberg Institute for Theoretical Studies; Alemania
Fil: Sesana, Alberto. Max-Planck-Institut für Gravitationsphysik; Alemania. University of Birmingham; Reino Unido
Fil: Cuadra, Jorge. Pontificia Universidad Católica de Chile; Chile. Institut Max Planck fuer Gesellschaft. Max Planck Institute for Extraterrestrial Physics; Alemania
Fil: Stasyszyn, Federico Andres. Leibniz-Institut für Astrophysik Potsdam; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina - Materia
-
ACCRETION, ACCRETION DISCS
BLACK HOLE PHYSICS
GALAXIES: EVOLUTION
GALAXIES: NUCLEI
HYDRODYNAMICS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/183146
Ver los metadatos del registro completo
id |
CONICETDig_48ac922907d22bfa736e32d8b6637aeb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/183146 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Infalling clouds on to supermassive black hole binaries - II. Binary evolution and the final parsec problemGoicovic, Felipe G.Sesana, AlbertoCuadra, JorgeStasyszyn, Federico AndresACCRETION, ACCRETION DISCSBLACK HOLE PHYSICSGALAXIES: EVOLUTIONGALAXIES: NUCLEIHYDRODYNAMICShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The formation of massive black hole binaries (MBHBs) is an unavoidable outcome of galaxy evolution via successive mergers. However, the mechanism that drives their orbital evolution from parsec separations down to the gravitationalwave dominated regime is poorly understood, and their final fate is still unclear. If such binaries are embedded in gas-rich and turbulent environments, as observed in remnants of galaxy mergers, the interactionwith gas clumps (such as molecular clouds)may efficiently drive their orbital evolution. Using numerical simulations, we test this hypothesis by studying the dynamical evolution of an equal mass, circular MBHB accreting infallingmolecular clouds.We investigate different orbital configurations,modelling a total of 13 systems to explore different possible impact parameters and relative inclinations of the cloud-binary encounter. We focus our study on the prompt, transient phase during the first few orbits when the dynamical evolution of the binary is fastest, finding that this evolution is dominated by the exchange of angular momentum through gas capture by the individual black holes and accretion. Building on these results, we construct a simple model for evolving an MBHB interacting with a sequence of clouds, which are randomly drawn from reasonable populations with different levels of anisotropy in their angular momenta distributions. We show that the binary efficiently evolves down to the gravitational wave emission regime within a few hundred million years, overcoming the 'final parsec' problem regardless of the stellar distribution.Fil: Goicovic, Felipe G.. Pontificia Universidad Católica de Chile; Chile. Max-Planck-Institut für Gravitationsphysik; Alemania. Heidelberg Institute for Theoretical Studies; AlemaniaFil: Sesana, Alberto. Max-Planck-Institut für Gravitationsphysik; Alemania. University of Birmingham; Reino UnidoFil: Cuadra, Jorge. Pontificia Universidad Católica de Chile; Chile. Institut Max Planck fuer Gesellschaft. Max Planck Institute for Extraterrestrial Physics; AlemaniaFil: Stasyszyn, Federico Andres. Leibniz-Institut für Astrophysik Potsdam; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaWiley Blackwell Publishing, Inc2017-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/183146Goicovic, Felipe G.; Sesana, Alberto; Cuadra, Jorge; Stasyszyn, Federico Andres; Infalling clouds on to supermassive black hole binaries - II. Binary evolution and the final parsec problem; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 472; 1; 11-2017; 514-5310035-87111365-2966CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article/472/1/514/4062211info:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stx1996info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1602.01966info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:09:49Zoai:ri.conicet.gov.ar:11336/183146instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:09:49.904CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Infalling clouds on to supermassive black hole binaries - II. Binary evolution and the final parsec problem |
title |
Infalling clouds on to supermassive black hole binaries - II. Binary evolution and the final parsec problem |
spellingShingle |
Infalling clouds on to supermassive black hole binaries - II. Binary evolution and the final parsec problem Goicovic, Felipe G. ACCRETION, ACCRETION DISCS BLACK HOLE PHYSICS GALAXIES: EVOLUTION GALAXIES: NUCLEI HYDRODYNAMICS |
title_short |
Infalling clouds on to supermassive black hole binaries - II. Binary evolution and the final parsec problem |
title_full |
Infalling clouds on to supermassive black hole binaries - II. Binary evolution and the final parsec problem |
title_fullStr |
Infalling clouds on to supermassive black hole binaries - II. Binary evolution and the final parsec problem |
title_full_unstemmed |
Infalling clouds on to supermassive black hole binaries - II. Binary evolution and the final parsec problem |
title_sort |
Infalling clouds on to supermassive black hole binaries - II. Binary evolution and the final parsec problem |
dc.creator.none.fl_str_mv |
Goicovic, Felipe G. Sesana, Alberto Cuadra, Jorge Stasyszyn, Federico Andres |
author |
Goicovic, Felipe G. |
author_facet |
Goicovic, Felipe G. Sesana, Alberto Cuadra, Jorge Stasyszyn, Federico Andres |
author_role |
author |
author2 |
Sesana, Alberto Cuadra, Jorge Stasyszyn, Federico Andres |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
ACCRETION, ACCRETION DISCS BLACK HOLE PHYSICS GALAXIES: EVOLUTION GALAXIES: NUCLEI HYDRODYNAMICS |
topic |
ACCRETION, ACCRETION DISCS BLACK HOLE PHYSICS GALAXIES: EVOLUTION GALAXIES: NUCLEI HYDRODYNAMICS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The formation of massive black hole binaries (MBHBs) is an unavoidable outcome of galaxy evolution via successive mergers. However, the mechanism that drives their orbital evolution from parsec separations down to the gravitationalwave dominated regime is poorly understood, and their final fate is still unclear. If such binaries are embedded in gas-rich and turbulent environments, as observed in remnants of galaxy mergers, the interactionwith gas clumps (such as molecular clouds)may efficiently drive their orbital evolution. Using numerical simulations, we test this hypothesis by studying the dynamical evolution of an equal mass, circular MBHB accreting infallingmolecular clouds.We investigate different orbital configurations,modelling a total of 13 systems to explore different possible impact parameters and relative inclinations of the cloud-binary encounter. We focus our study on the prompt, transient phase during the first few orbits when the dynamical evolution of the binary is fastest, finding that this evolution is dominated by the exchange of angular momentum through gas capture by the individual black holes and accretion. Building on these results, we construct a simple model for evolving an MBHB interacting with a sequence of clouds, which are randomly drawn from reasonable populations with different levels of anisotropy in their angular momenta distributions. We show that the binary efficiently evolves down to the gravitational wave emission regime within a few hundred million years, overcoming the 'final parsec' problem regardless of the stellar distribution. Fil: Goicovic, Felipe G.. Pontificia Universidad Católica de Chile; Chile. Max-Planck-Institut für Gravitationsphysik; Alemania. Heidelberg Institute for Theoretical Studies; Alemania Fil: Sesana, Alberto. Max-Planck-Institut für Gravitationsphysik; Alemania. University of Birmingham; Reino Unido Fil: Cuadra, Jorge. Pontificia Universidad Católica de Chile; Chile. Institut Max Planck fuer Gesellschaft. Max Planck Institute for Extraterrestrial Physics; Alemania Fil: Stasyszyn, Federico Andres. Leibniz-Institut für Astrophysik Potsdam; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina |
description |
The formation of massive black hole binaries (MBHBs) is an unavoidable outcome of galaxy evolution via successive mergers. However, the mechanism that drives their orbital evolution from parsec separations down to the gravitationalwave dominated regime is poorly understood, and their final fate is still unclear. If such binaries are embedded in gas-rich and turbulent environments, as observed in remnants of galaxy mergers, the interactionwith gas clumps (such as molecular clouds)may efficiently drive their orbital evolution. Using numerical simulations, we test this hypothesis by studying the dynamical evolution of an equal mass, circular MBHB accreting infallingmolecular clouds.We investigate different orbital configurations,modelling a total of 13 systems to explore different possible impact parameters and relative inclinations of the cloud-binary encounter. We focus our study on the prompt, transient phase during the first few orbits when the dynamical evolution of the binary is fastest, finding that this evolution is dominated by the exchange of angular momentum through gas capture by the individual black holes and accretion. Building on these results, we construct a simple model for evolving an MBHB interacting with a sequence of clouds, which are randomly drawn from reasonable populations with different levels of anisotropy in their angular momenta distributions. We show that the binary efficiently evolves down to the gravitational wave emission regime within a few hundred million years, overcoming the 'final parsec' problem regardless of the stellar distribution. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/183146 Goicovic, Felipe G.; Sesana, Alberto; Cuadra, Jorge; Stasyszyn, Federico Andres; Infalling clouds on to supermassive black hole binaries - II. Binary evolution and the final parsec problem; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 472; 1; 11-2017; 514-531 0035-8711 1365-2966 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/183146 |
identifier_str_mv |
Goicovic, Felipe G.; Sesana, Alberto; Cuadra, Jorge; Stasyszyn, Federico Andres; Infalling clouds on to supermassive black hole binaries - II. Binary evolution and the final parsec problem; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 472; 1; 11-2017; 514-531 0035-8711 1365-2966 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article/472/1/514/4062211 info:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stx1996 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1602.01966 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613980870410240 |
score |
13.070432 |