Infalling clouds on to supermassive black hole binaries - II. Binary evolution and the final parsec problem

Autores
Goicovic, Felipe G.; Sesana, Alberto; Cuadra, Jorge; Stasyszyn, Federico Andres
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The formation of massive black hole binaries (MBHBs) is an unavoidable outcome of galaxy evolution via successive mergers. However, the mechanism that drives their orbital evolution from parsec separations down to the gravitationalwave dominated regime is poorly understood, and their final fate is still unclear. If such binaries are embedded in gas-rich and turbulent environments, as observed in remnants of galaxy mergers, the interactionwith gas clumps (such as molecular clouds)may efficiently drive their orbital evolution. Using numerical simulations, we test this hypothesis by studying the dynamical evolution of an equal mass, circular MBHB accreting infallingmolecular clouds.We investigate different orbital configurations,modelling a total of 13 systems to explore different possible impact parameters and relative inclinations of the cloud-binary encounter. We focus our study on the prompt, transient phase during the first few orbits when the dynamical evolution of the binary is fastest, finding that this evolution is dominated by the exchange of angular momentum through gas capture by the individual black holes and accretion. Building on these results, we construct a simple model for evolving an MBHB interacting with a sequence of clouds, which are randomly drawn from reasonable populations with different levels of anisotropy in their angular momenta distributions. We show that the binary efficiently evolves down to the gravitational wave emission regime within a few hundred million years, overcoming the 'final parsec' problem regardless of the stellar distribution.
Fil: Goicovic, Felipe G.. Pontificia Universidad Católica de Chile; Chile. Max-Planck-Institut für Gravitationsphysik; Alemania. Heidelberg Institute for Theoretical Studies; Alemania
Fil: Sesana, Alberto. Max-Planck-Institut für Gravitationsphysik; Alemania. University of Birmingham; Reino Unido
Fil: Cuadra, Jorge. Pontificia Universidad Católica de Chile; Chile. Institut Max Planck fuer Gesellschaft. Max Planck Institute for Extraterrestrial Physics; Alemania
Fil: Stasyszyn, Federico Andres. Leibniz-Institut für Astrophysik Potsdam; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Materia
ACCRETION, ACCRETION DISCS
BLACK HOLE PHYSICS
GALAXIES: EVOLUTION
GALAXIES: NUCLEI
HYDRODYNAMICS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/183146

id CONICETDig_48ac922907d22bfa736e32d8b6637aeb
oai_identifier_str oai:ri.conicet.gov.ar:11336/183146
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Infalling clouds on to supermassive black hole binaries - II. Binary evolution and the final parsec problemGoicovic, Felipe G.Sesana, AlbertoCuadra, JorgeStasyszyn, Federico AndresACCRETION, ACCRETION DISCSBLACK HOLE PHYSICSGALAXIES: EVOLUTIONGALAXIES: NUCLEIHYDRODYNAMICShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The formation of massive black hole binaries (MBHBs) is an unavoidable outcome of galaxy evolution via successive mergers. However, the mechanism that drives their orbital evolution from parsec separations down to the gravitationalwave dominated regime is poorly understood, and their final fate is still unclear. If such binaries are embedded in gas-rich and turbulent environments, as observed in remnants of galaxy mergers, the interactionwith gas clumps (such as molecular clouds)may efficiently drive their orbital evolution. Using numerical simulations, we test this hypothesis by studying the dynamical evolution of an equal mass, circular MBHB accreting infallingmolecular clouds.We investigate different orbital configurations,modelling a total of 13 systems to explore different possible impact parameters and relative inclinations of the cloud-binary encounter. We focus our study on the prompt, transient phase during the first few orbits when the dynamical evolution of the binary is fastest, finding that this evolution is dominated by the exchange of angular momentum through gas capture by the individual black holes and accretion. Building on these results, we construct a simple model for evolving an MBHB interacting with a sequence of clouds, which are randomly drawn from reasonable populations with different levels of anisotropy in their angular momenta distributions. We show that the binary efficiently evolves down to the gravitational wave emission regime within a few hundred million years, overcoming the 'final parsec' problem regardless of the stellar distribution.Fil: Goicovic, Felipe G.. Pontificia Universidad Católica de Chile; Chile. Max-Planck-Institut für Gravitationsphysik; Alemania. Heidelberg Institute for Theoretical Studies; AlemaniaFil: Sesana, Alberto. Max-Planck-Institut für Gravitationsphysik; Alemania. University of Birmingham; Reino UnidoFil: Cuadra, Jorge. Pontificia Universidad Católica de Chile; Chile. Institut Max Planck fuer Gesellschaft. Max Planck Institute for Extraterrestrial Physics; AlemaniaFil: Stasyszyn, Federico Andres. Leibniz-Institut für Astrophysik Potsdam; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaWiley Blackwell Publishing, Inc2017-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/183146Goicovic, Felipe G.; Sesana, Alberto; Cuadra, Jorge; Stasyszyn, Federico Andres; Infalling clouds on to supermassive black hole binaries - II. Binary evolution and the final parsec problem; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 472; 1; 11-2017; 514-5310035-87111365-2966CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article/472/1/514/4062211info:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stx1996info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1602.01966info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:09:49Zoai:ri.conicet.gov.ar:11336/183146instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:09:49.904CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Infalling clouds on to supermassive black hole binaries - II. Binary evolution and the final parsec problem
title Infalling clouds on to supermassive black hole binaries - II. Binary evolution and the final parsec problem
spellingShingle Infalling clouds on to supermassive black hole binaries - II. Binary evolution and the final parsec problem
Goicovic, Felipe G.
ACCRETION, ACCRETION DISCS
BLACK HOLE PHYSICS
GALAXIES: EVOLUTION
GALAXIES: NUCLEI
HYDRODYNAMICS
title_short Infalling clouds on to supermassive black hole binaries - II. Binary evolution and the final parsec problem
title_full Infalling clouds on to supermassive black hole binaries - II. Binary evolution and the final parsec problem
title_fullStr Infalling clouds on to supermassive black hole binaries - II. Binary evolution and the final parsec problem
title_full_unstemmed Infalling clouds on to supermassive black hole binaries - II. Binary evolution and the final parsec problem
title_sort Infalling clouds on to supermassive black hole binaries - II. Binary evolution and the final parsec problem
dc.creator.none.fl_str_mv Goicovic, Felipe G.
Sesana, Alberto
Cuadra, Jorge
Stasyszyn, Federico Andres
author Goicovic, Felipe G.
author_facet Goicovic, Felipe G.
Sesana, Alberto
Cuadra, Jorge
Stasyszyn, Federico Andres
author_role author
author2 Sesana, Alberto
Cuadra, Jorge
Stasyszyn, Federico Andres
author2_role author
author
author
dc.subject.none.fl_str_mv ACCRETION, ACCRETION DISCS
BLACK HOLE PHYSICS
GALAXIES: EVOLUTION
GALAXIES: NUCLEI
HYDRODYNAMICS
topic ACCRETION, ACCRETION DISCS
BLACK HOLE PHYSICS
GALAXIES: EVOLUTION
GALAXIES: NUCLEI
HYDRODYNAMICS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The formation of massive black hole binaries (MBHBs) is an unavoidable outcome of galaxy evolution via successive mergers. However, the mechanism that drives their orbital evolution from parsec separations down to the gravitationalwave dominated regime is poorly understood, and their final fate is still unclear. If such binaries are embedded in gas-rich and turbulent environments, as observed in remnants of galaxy mergers, the interactionwith gas clumps (such as molecular clouds)may efficiently drive their orbital evolution. Using numerical simulations, we test this hypothesis by studying the dynamical evolution of an equal mass, circular MBHB accreting infallingmolecular clouds.We investigate different orbital configurations,modelling a total of 13 systems to explore different possible impact parameters and relative inclinations of the cloud-binary encounter. We focus our study on the prompt, transient phase during the first few orbits when the dynamical evolution of the binary is fastest, finding that this evolution is dominated by the exchange of angular momentum through gas capture by the individual black holes and accretion. Building on these results, we construct a simple model for evolving an MBHB interacting with a sequence of clouds, which are randomly drawn from reasonable populations with different levels of anisotropy in their angular momenta distributions. We show that the binary efficiently evolves down to the gravitational wave emission regime within a few hundred million years, overcoming the 'final parsec' problem regardless of the stellar distribution.
Fil: Goicovic, Felipe G.. Pontificia Universidad Católica de Chile; Chile. Max-Planck-Institut für Gravitationsphysik; Alemania. Heidelberg Institute for Theoretical Studies; Alemania
Fil: Sesana, Alberto. Max-Planck-Institut für Gravitationsphysik; Alemania. University of Birmingham; Reino Unido
Fil: Cuadra, Jorge. Pontificia Universidad Católica de Chile; Chile. Institut Max Planck fuer Gesellschaft. Max Planck Institute for Extraterrestrial Physics; Alemania
Fil: Stasyszyn, Federico Andres. Leibniz-Institut für Astrophysik Potsdam; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
description The formation of massive black hole binaries (MBHBs) is an unavoidable outcome of galaxy evolution via successive mergers. However, the mechanism that drives their orbital evolution from parsec separations down to the gravitationalwave dominated regime is poorly understood, and their final fate is still unclear. If such binaries are embedded in gas-rich and turbulent environments, as observed in remnants of galaxy mergers, the interactionwith gas clumps (such as molecular clouds)may efficiently drive their orbital evolution. Using numerical simulations, we test this hypothesis by studying the dynamical evolution of an equal mass, circular MBHB accreting infallingmolecular clouds.We investigate different orbital configurations,modelling a total of 13 systems to explore different possible impact parameters and relative inclinations of the cloud-binary encounter. We focus our study on the prompt, transient phase during the first few orbits when the dynamical evolution of the binary is fastest, finding that this evolution is dominated by the exchange of angular momentum through gas capture by the individual black holes and accretion. Building on these results, we construct a simple model for evolving an MBHB interacting with a sequence of clouds, which are randomly drawn from reasonable populations with different levels of anisotropy in their angular momenta distributions. We show that the binary efficiently evolves down to the gravitational wave emission regime within a few hundred million years, overcoming the 'final parsec' problem regardless of the stellar distribution.
publishDate 2017
dc.date.none.fl_str_mv 2017-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/183146
Goicovic, Felipe G.; Sesana, Alberto; Cuadra, Jorge; Stasyszyn, Federico Andres; Infalling clouds on to supermassive black hole binaries - II. Binary evolution and the final parsec problem; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 472; 1; 11-2017; 514-531
0035-8711
1365-2966
CONICET Digital
CONICET
url http://hdl.handle.net/11336/183146
identifier_str_mv Goicovic, Felipe G.; Sesana, Alberto; Cuadra, Jorge; Stasyszyn, Federico Andres; Infalling clouds on to supermassive black hole binaries - II. Binary evolution and the final parsec problem; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 472; 1; 11-2017; 514-531
0035-8711
1365-2966
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article/472/1/514/4062211
info:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stx1996
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1602.01966
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613980870410240
score 13.070432