Volterra-type models for nonlinear systems identification
- Autores
- Schmidt, Christian Andrés; Biagiola, Silvina Ines; Cousseau, Juan Edmundo; Figueroa, Jose Luis
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work, multi-input multi-output (MIMO) nonlinear process identification is dealt with. In particular, two Volterra-type models are discussed in the context of system identification. These models are: Memory Polynomial (MP) and Modified Generalized Memory Polynomial (MGMP), which can be considered as a generalization of Hammerstein and Wiener models, respectively. Both of them are appealing representations as they allow to describe larger model sets with less parametric complexity. Simulation example is given to illustrate the quality of the obtained models.
Fil: Schmidt, Christian Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur; Argentina
Fil: Biagiola, Silvina Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur; Argentina
Fil: Cousseau, Juan Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur; Argentina
Fil: Figueroa, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur; Argentina - Materia
-
Nonlinear Identification
Volterra-Type Models
Wiener Model
Hammerstein Model - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/11777
Ver los metadatos del registro completo
id |
CONICETDig_48a6b987611820bf8312dc7f7e990e5c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/11777 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Volterra-type models for nonlinear systems identificationSchmidt, Christian AndrésBiagiola, Silvina InesCousseau, Juan EdmundoFigueroa, Jose LuisNonlinear IdentificationVolterra-Type ModelsWiener ModelHammerstein Modelhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In this work, multi-input multi-output (MIMO) nonlinear process identification is dealt with. In particular, two Volterra-type models are discussed in the context of system identification. These models are: Memory Polynomial (MP) and Modified Generalized Memory Polynomial (MGMP), which can be considered as a generalization of Hammerstein and Wiener models, respectively. Both of them are appealing representations as they allow to describe larger model sets with less parametric complexity. Simulation example is given to illustrate the quality of the obtained models.Fil: Schmidt, Christian Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur; ArgentinaFil: Biagiola, Silvina Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur; ArgentinaFil: Cousseau, Juan Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur; ArgentinaFil: Figueroa, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur; ArgentinaElsevier Science Inc2014-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/11777Schmidt, Christian Andrés; Biagiola, Silvina Ines; Cousseau, Juan Edmundo; Figueroa, Jose Luis; Volterra-type models for nonlinear systems identification; Elsevier Science Inc; Applied Mathematical Modelling; 38; 9-10; 5-2014; 2414-24210307-904Xenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0307904X13006537info:eu-repo/semantics/altIdentifier/doi/10.1016/j.apm.2013.10.041info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:04:02Zoai:ri.conicet.gov.ar:11336/11777instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:04:02.852CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Volterra-type models for nonlinear systems identification |
title |
Volterra-type models for nonlinear systems identification |
spellingShingle |
Volterra-type models for nonlinear systems identification Schmidt, Christian Andrés Nonlinear Identification Volterra-Type Models Wiener Model Hammerstein Model |
title_short |
Volterra-type models for nonlinear systems identification |
title_full |
Volterra-type models for nonlinear systems identification |
title_fullStr |
Volterra-type models for nonlinear systems identification |
title_full_unstemmed |
Volterra-type models for nonlinear systems identification |
title_sort |
Volterra-type models for nonlinear systems identification |
dc.creator.none.fl_str_mv |
Schmidt, Christian Andrés Biagiola, Silvina Ines Cousseau, Juan Edmundo Figueroa, Jose Luis |
author |
Schmidt, Christian Andrés |
author_facet |
Schmidt, Christian Andrés Biagiola, Silvina Ines Cousseau, Juan Edmundo Figueroa, Jose Luis |
author_role |
author |
author2 |
Biagiola, Silvina Ines Cousseau, Juan Edmundo Figueroa, Jose Luis |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Nonlinear Identification Volterra-Type Models Wiener Model Hammerstein Model |
topic |
Nonlinear Identification Volterra-Type Models Wiener Model Hammerstein Model |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this work, multi-input multi-output (MIMO) nonlinear process identification is dealt with. In particular, two Volterra-type models are discussed in the context of system identification. These models are: Memory Polynomial (MP) and Modified Generalized Memory Polynomial (MGMP), which can be considered as a generalization of Hammerstein and Wiener models, respectively. Both of them are appealing representations as they allow to describe larger model sets with less parametric complexity. Simulation example is given to illustrate the quality of the obtained models. Fil: Schmidt, Christian Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur; Argentina Fil: Biagiola, Silvina Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur; Argentina Fil: Cousseau, Juan Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur; Argentina Fil: Figueroa, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur; Argentina |
description |
In this work, multi-input multi-output (MIMO) nonlinear process identification is dealt with. In particular, two Volterra-type models are discussed in the context of system identification. These models are: Memory Polynomial (MP) and Modified Generalized Memory Polynomial (MGMP), which can be considered as a generalization of Hammerstein and Wiener models, respectively. Both of them are appealing representations as they allow to describe larger model sets with less parametric complexity. Simulation example is given to illustrate the quality of the obtained models. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/11777 Schmidt, Christian Andrés; Biagiola, Silvina Ines; Cousseau, Juan Edmundo; Figueroa, Jose Luis; Volterra-type models for nonlinear systems identification; Elsevier Science Inc; Applied Mathematical Modelling; 38; 9-10; 5-2014; 2414-2421 0307-904X |
url |
http://hdl.handle.net/11336/11777 |
identifier_str_mv |
Schmidt, Christian Andrés; Biagiola, Silvina Ines; Cousseau, Juan Edmundo; Figueroa, Jose Luis; Volterra-type models for nonlinear systems identification; Elsevier Science Inc; Applied Mathematical Modelling; 38; 9-10; 5-2014; 2414-2421 0307-904X |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0307904X13006537 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.apm.2013.10.041 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Inc |
publisher.none.fl_str_mv |
Elsevier Science Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980124016771072 |
score |
13.004268 |