Mixed mode crack propagation in polymers using a discrete lattice method
- Autores
- Braun, Matias Nicolas; Aranda Ruiz, Josué; Fernández Sáez, José
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The fracture behavior of polymeric materials has been widely studied in recent years, both experimentally and numerically. Different numerical approaches have been considered in the study of crack propagation processes, from continuum-based numerical formulations to discrete models, many of the latter being limited in the selection of the Poisson’s coefficient of the considered material. In this work, we present a numerical and experimental analysis of the crack propagation process of polymethylmethacrylate beams with central and eccentric notches subjected to quasi-static three-point bending tests. The developed discrete numerical model consists of a regular triangu-lar lattice model based on axial and normal interaction springs, accounting for nearest-neighbor interactions. The proposed model allows solving the above mentioned limitation in the selection of Poisson’s coefficient, incorporating a fracture criterion defined by a bilinear law with softening that includes the fracture energy in the formulation and allows considering a progressive damage. One of the main objectives of this work is to show the capacity of this lattice to simulate quasi-static fracture problems. The obtained results show that the proposed lattice model is capable of providing results close to the experimental ones in terms of crack pattern, peak load and initial stiffening.
Fil: Braun, Matias Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Aranda Ruiz, Josué. Universidad Carlos III de Madrid. Instituto de Salud; España
Fil: Fernández Sáez, José. Universidad Carlos III de Madrid. Instituto de Salud; España - Materia
-
CRACK PROPAGATION
DISCRETE METHOD
EXPERIMENTAL TESTING
LATTICE MODEL
NUMERICAL SIMULATION
PMMA
THREE-POINT BEND - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/179304
Ver los metadatos del registro completo
| id |
CONICETDig_4880110de65068ada30375b460803f32 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/179304 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Mixed mode crack propagation in polymers using a discrete lattice methodBraun, Matias NicolasAranda Ruiz, JosuéFernández Sáez, JoséCRACK PROPAGATIONDISCRETE METHODEXPERIMENTAL TESTINGLATTICE MODELNUMERICAL SIMULATIONPMMATHREE-POINT BENDhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2The fracture behavior of polymeric materials has been widely studied in recent years, both experimentally and numerically. Different numerical approaches have been considered in the study of crack propagation processes, from continuum-based numerical formulations to discrete models, many of the latter being limited in the selection of the Poisson’s coefficient of the considered material. In this work, we present a numerical and experimental analysis of the crack propagation process of polymethylmethacrylate beams with central and eccentric notches subjected to quasi-static three-point bending tests. The developed discrete numerical model consists of a regular triangu-lar lattice model based on axial and normal interaction springs, accounting for nearest-neighbor interactions. The proposed model allows solving the above mentioned limitation in the selection of Poisson’s coefficient, incorporating a fracture criterion defined by a bilinear law with softening that includes the fracture energy in the formulation and allows considering a progressive damage. One of the main objectives of this work is to show the capacity of this lattice to simulate quasi-static fracture problems. The obtained results show that the proposed lattice model is capable of providing results close to the experimental ones in terms of crack pattern, peak load and initial stiffening.Fil: Braun, Matias Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Aranda Ruiz, Josué. Universidad Carlos III de Madrid. Instituto de Salud; EspañaFil: Fernández Sáez, José. Universidad Carlos III de Madrid. Instituto de Salud; EspañaMultidisciplinary Digital Publishing Institute2021-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/179304Braun, Matias Nicolas; Aranda Ruiz, Josué; Fernández Sáez, José; Mixed mode crack propagation in polymers using a discrete lattice method; Multidisciplinary Digital Publishing Institute; Polymers; 13; 8; 4-2021; 1-182073-4360CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-4360/13/8/1290info:eu-repo/semantics/altIdentifier/doi/10.3390/polym13081290info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:40:34Zoai:ri.conicet.gov.ar:11336/179304instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:40:34.935CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Mixed mode crack propagation in polymers using a discrete lattice method |
| title |
Mixed mode crack propagation in polymers using a discrete lattice method |
| spellingShingle |
Mixed mode crack propagation in polymers using a discrete lattice method Braun, Matias Nicolas CRACK PROPAGATION DISCRETE METHOD EXPERIMENTAL TESTING LATTICE MODEL NUMERICAL SIMULATION PMMA THREE-POINT BEND |
| title_short |
Mixed mode crack propagation in polymers using a discrete lattice method |
| title_full |
Mixed mode crack propagation in polymers using a discrete lattice method |
| title_fullStr |
Mixed mode crack propagation in polymers using a discrete lattice method |
| title_full_unstemmed |
Mixed mode crack propagation in polymers using a discrete lattice method |
| title_sort |
Mixed mode crack propagation in polymers using a discrete lattice method |
| dc.creator.none.fl_str_mv |
Braun, Matias Nicolas Aranda Ruiz, Josué Fernández Sáez, José |
| author |
Braun, Matias Nicolas |
| author_facet |
Braun, Matias Nicolas Aranda Ruiz, Josué Fernández Sáez, José |
| author_role |
author |
| author2 |
Aranda Ruiz, Josué Fernández Sáez, José |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
CRACK PROPAGATION DISCRETE METHOD EXPERIMENTAL TESTING LATTICE MODEL NUMERICAL SIMULATION PMMA THREE-POINT BEND |
| topic |
CRACK PROPAGATION DISCRETE METHOD EXPERIMENTAL TESTING LATTICE MODEL NUMERICAL SIMULATION PMMA THREE-POINT BEND |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
The fracture behavior of polymeric materials has been widely studied in recent years, both experimentally and numerically. Different numerical approaches have been considered in the study of crack propagation processes, from continuum-based numerical formulations to discrete models, many of the latter being limited in the selection of the Poisson’s coefficient of the considered material. In this work, we present a numerical and experimental analysis of the crack propagation process of polymethylmethacrylate beams with central and eccentric notches subjected to quasi-static three-point bending tests. The developed discrete numerical model consists of a regular triangu-lar lattice model based on axial and normal interaction springs, accounting for nearest-neighbor interactions. The proposed model allows solving the above mentioned limitation in the selection of Poisson’s coefficient, incorporating a fracture criterion defined by a bilinear law with softening that includes the fracture energy in the formulation and allows considering a progressive damage. One of the main objectives of this work is to show the capacity of this lattice to simulate quasi-static fracture problems. The obtained results show that the proposed lattice model is capable of providing results close to the experimental ones in terms of crack pattern, peak load and initial stiffening. Fil: Braun, Matias Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Aranda Ruiz, Josué. Universidad Carlos III de Madrid. Instituto de Salud; España Fil: Fernández Sáez, José. Universidad Carlos III de Madrid. Instituto de Salud; España |
| description |
The fracture behavior of polymeric materials has been widely studied in recent years, both experimentally and numerically. Different numerical approaches have been considered in the study of crack propagation processes, from continuum-based numerical formulations to discrete models, many of the latter being limited in the selection of the Poisson’s coefficient of the considered material. In this work, we present a numerical and experimental analysis of the crack propagation process of polymethylmethacrylate beams with central and eccentric notches subjected to quasi-static three-point bending tests. The developed discrete numerical model consists of a regular triangu-lar lattice model based on axial and normal interaction springs, accounting for nearest-neighbor interactions. The proposed model allows solving the above mentioned limitation in the selection of Poisson’s coefficient, incorporating a fracture criterion defined by a bilinear law with softening that includes the fracture energy in the formulation and allows considering a progressive damage. One of the main objectives of this work is to show the capacity of this lattice to simulate quasi-static fracture problems. The obtained results show that the proposed lattice model is capable of providing results close to the experimental ones in terms of crack pattern, peak load and initial stiffening. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/179304 Braun, Matias Nicolas; Aranda Ruiz, Josué; Fernández Sáez, José; Mixed mode crack propagation in polymers using a discrete lattice method; Multidisciplinary Digital Publishing Institute; Polymers; 13; 8; 4-2021; 1-18 2073-4360 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/179304 |
| identifier_str_mv |
Braun, Matias Nicolas; Aranda Ruiz, Josué; Fernández Sáez, José; Mixed mode crack propagation in polymers using a discrete lattice method; Multidisciplinary Digital Publishing Institute; Polymers; 13; 8; 4-2021; 1-18 2073-4360 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-4360/13/8/1290 info:eu-repo/semantics/altIdentifier/doi/10.3390/polym13081290 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
| publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782078094409728 |
| score |
12.982451 |