Mixed mode crack propagation in polymers using a discrete lattice method

Autores
Braun, Matias Nicolas; Aranda Ruiz, Josué; Fernández Sáez, José
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The fracture behavior of polymeric materials has been widely studied in recent years, both experimentally and numerically. Different numerical approaches have been considered in the study of crack propagation processes, from continuum-based numerical formulations to discrete models, many of the latter being limited in the selection of the Poisson’s coefficient of the considered material. In this work, we present a numerical and experimental analysis of the crack propagation process of polymethylmethacrylate beams with central and eccentric notches subjected to quasi-static three-point bending tests. The developed discrete numerical model consists of a regular triangu-lar lattice model based on axial and normal interaction springs, accounting for nearest-neighbor interactions. The proposed model allows solving the above mentioned limitation in the selection of Poisson’s coefficient, incorporating a fracture criterion defined by a bilinear law with softening that includes the fracture energy in the formulation and allows considering a progressive damage. One of the main objectives of this work is to show the capacity of this lattice to simulate quasi-static fracture problems. The obtained results show that the proposed lattice model is capable of providing results close to the experimental ones in terms of crack pattern, peak load and initial stiffening.
Fil: Braun, Matias Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Aranda Ruiz, Josué. Universidad Carlos III de Madrid. Instituto de Salud; España
Fil: Fernández Sáez, José. Universidad Carlos III de Madrid. Instituto de Salud; España
Materia
CRACK PROPAGATION
DISCRETE METHOD
EXPERIMENTAL TESTING
LATTICE MODEL
NUMERICAL SIMULATION
PMMA
THREE-POINT BEND
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/179304

id CONICETDig_4880110de65068ada30375b460803f32
oai_identifier_str oai:ri.conicet.gov.ar:11336/179304
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Mixed mode crack propagation in polymers using a discrete lattice methodBraun, Matias NicolasAranda Ruiz, JosuéFernández Sáez, JoséCRACK PROPAGATIONDISCRETE METHODEXPERIMENTAL TESTINGLATTICE MODELNUMERICAL SIMULATIONPMMATHREE-POINT BENDhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2The fracture behavior of polymeric materials has been widely studied in recent years, both experimentally and numerically. Different numerical approaches have been considered in the study of crack propagation processes, from continuum-based numerical formulations to discrete models, many of the latter being limited in the selection of the Poisson’s coefficient of the considered material. In this work, we present a numerical and experimental analysis of the crack propagation process of polymethylmethacrylate beams with central and eccentric notches subjected to quasi-static three-point bending tests. The developed discrete numerical model consists of a regular triangu-lar lattice model based on axial and normal interaction springs, accounting for nearest-neighbor interactions. The proposed model allows solving the above mentioned limitation in the selection of Poisson’s coefficient, incorporating a fracture criterion defined by a bilinear law with softening that includes the fracture energy in the formulation and allows considering a progressive damage. One of the main objectives of this work is to show the capacity of this lattice to simulate quasi-static fracture problems. The obtained results show that the proposed lattice model is capable of providing results close to the experimental ones in terms of crack pattern, peak load and initial stiffening.Fil: Braun, Matias Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Aranda Ruiz, Josué. Universidad Carlos III de Madrid. Instituto de Salud; EspañaFil: Fernández Sáez, José. Universidad Carlos III de Madrid. Instituto de Salud; EspañaMultidisciplinary Digital Publishing Institute2021-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/179304Braun, Matias Nicolas; Aranda Ruiz, Josué; Fernández Sáez, José; Mixed mode crack propagation in polymers using a discrete lattice method; Multidisciplinary Digital Publishing Institute; Polymers; 13; 8; 4-2021; 1-182073-4360CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-4360/13/8/1290info:eu-repo/semantics/altIdentifier/doi/10.3390/polym13081290info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:40:34Zoai:ri.conicet.gov.ar:11336/179304instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:40:34.935CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Mixed mode crack propagation in polymers using a discrete lattice method
title Mixed mode crack propagation in polymers using a discrete lattice method
spellingShingle Mixed mode crack propagation in polymers using a discrete lattice method
Braun, Matias Nicolas
CRACK PROPAGATION
DISCRETE METHOD
EXPERIMENTAL TESTING
LATTICE MODEL
NUMERICAL SIMULATION
PMMA
THREE-POINT BEND
title_short Mixed mode crack propagation in polymers using a discrete lattice method
title_full Mixed mode crack propagation in polymers using a discrete lattice method
title_fullStr Mixed mode crack propagation in polymers using a discrete lattice method
title_full_unstemmed Mixed mode crack propagation in polymers using a discrete lattice method
title_sort Mixed mode crack propagation in polymers using a discrete lattice method
dc.creator.none.fl_str_mv Braun, Matias Nicolas
Aranda Ruiz, Josué
Fernández Sáez, José
author Braun, Matias Nicolas
author_facet Braun, Matias Nicolas
Aranda Ruiz, Josué
Fernández Sáez, José
author_role author
author2 Aranda Ruiz, Josué
Fernández Sáez, José
author2_role author
author
dc.subject.none.fl_str_mv CRACK PROPAGATION
DISCRETE METHOD
EXPERIMENTAL TESTING
LATTICE MODEL
NUMERICAL SIMULATION
PMMA
THREE-POINT BEND
topic CRACK PROPAGATION
DISCRETE METHOD
EXPERIMENTAL TESTING
LATTICE MODEL
NUMERICAL SIMULATION
PMMA
THREE-POINT BEND
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The fracture behavior of polymeric materials has been widely studied in recent years, both experimentally and numerically. Different numerical approaches have been considered in the study of crack propagation processes, from continuum-based numerical formulations to discrete models, many of the latter being limited in the selection of the Poisson’s coefficient of the considered material. In this work, we present a numerical and experimental analysis of the crack propagation process of polymethylmethacrylate beams with central and eccentric notches subjected to quasi-static three-point bending tests. The developed discrete numerical model consists of a regular triangu-lar lattice model based on axial and normal interaction springs, accounting for nearest-neighbor interactions. The proposed model allows solving the above mentioned limitation in the selection of Poisson’s coefficient, incorporating a fracture criterion defined by a bilinear law with softening that includes the fracture energy in the formulation and allows considering a progressive damage. One of the main objectives of this work is to show the capacity of this lattice to simulate quasi-static fracture problems. The obtained results show that the proposed lattice model is capable of providing results close to the experimental ones in terms of crack pattern, peak load and initial stiffening.
Fil: Braun, Matias Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Aranda Ruiz, Josué. Universidad Carlos III de Madrid. Instituto de Salud; España
Fil: Fernández Sáez, José. Universidad Carlos III de Madrid. Instituto de Salud; España
description The fracture behavior of polymeric materials has been widely studied in recent years, both experimentally and numerically. Different numerical approaches have been considered in the study of crack propagation processes, from continuum-based numerical formulations to discrete models, many of the latter being limited in the selection of the Poisson’s coefficient of the considered material. In this work, we present a numerical and experimental analysis of the crack propagation process of polymethylmethacrylate beams with central and eccentric notches subjected to quasi-static three-point bending tests. The developed discrete numerical model consists of a regular triangu-lar lattice model based on axial and normal interaction springs, accounting for nearest-neighbor interactions. The proposed model allows solving the above mentioned limitation in the selection of Poisson’s coefficient, incorporating a fracture criterion defined by a bilinear law with softening that includes the fracture energy in the formulation and allows considering a progressive damage. One of the main objectives of this work is to show the capacity of this lattice to simulate quasi-static fracture problems. The obtained results show that the proposed lattice model is capable of providing results close to the experimental ones in terms of crack pattern, peak load and initial stiffening.
publishDate 2021
dc.date.none.fl_str_mv 2021-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/179304
Braun, Matias Nicolas; Aranda Ruiz, Josué; Fernández Sáez, José; Mixed mode crack propagation in polymers using a discrete lattice method; Multidisciplinary Digital Publishing Institute; Polymers; 13; 8; 4-2021; 1-18
2073-4360
CONICET Digital
CONICET
url http://hdl.handle.net/11336/179304
identifier_str_mv Braun, Matias Nicolas; Aranda Ruiz, Josué; Fernández Sáez, José; Mixed mode crack propagation in polymers using a discrete lattice method; Multidisciplinary Digital Publishing Institute; Polymers; 13; 8; 4-2021; 1-18
2073-4360
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-4360/13/8/1290
info:eu-repo/semantics/altIdentifier/doi/10.3390/polym13081290
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782078094409728
score 12.982451