Fatigue crack growth of a metastable austenitic stainless steel

Autores
Martelo Guarin, David Fernando; Mateo, Antonio; Chapetti, Mirco Daniel
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The fatigue crack growth behavior of an austenitic metastable stainless steel AISI 301LN in the Paris region is investigated in this work. The fatigue crack growth rate curves are evaluated in terms of different parameters such as the range of stress intensity factor ΔK, the effective stress intensity factor ΔKeff, and the two driving force parameter proposed by Kujawski K∗.The finite element method is used to calculate the stress intensity factor of the specimens used in this investigation. The new stress intensity factor solution has been proved to be an alternative to explain contradictory results found in the literature.Fatigue crack propagation tests have been carried out on thin sheets with two different microstructural conditions and different load ratios. The influence of microstructural and mechanical variables has been analyzed using different mechanisms proposed in the literature. The influence of the compressive residual stress induced by the martensitic transformation is determined by using a model based on the proposal of McMeeking et al. The analyses demonstrate the necessity of including Kmax as a true driving force for the fatigue crack growth. A combined parameter is proposed to explain the effects of different variables on the fatigue crack growth rate curves. It is found that along with residual stresses, the microcracks and microvoids are other factor affecting the fatigue crack growth rate in the steel studied.
Fil: Martelo Guarin, David Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Mateo, Antonio. Universidad Politécnica de Catalunya; España
Fil: Chapetti, Mirco Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Materia
Fatigue crack propagation
Metastable austenitic stainless steel
Crack closure
Martensitic transformation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/128573

id CONICETDig_e8d86f538bbea202dd703cf7597859c0
oai_identifier_str oai:ri.conicet.gov.ar:11336/128573
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Fatigue crack growth of a metastable austenitic stainless steelMartelo Guarin, David FernandoMateo, AntonioChapetti, Mirco DanielFatigue crack propagationMetastable austenitic stainless steelCrack closureMartensitic transformationhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2The fatigue crack growth behavior of an austenitic metastable stainless steel AISI 301LN in the Paris region is investigated in this work. The fatigue crack growth rate curves are evaluated in terms of different parameters such as the range of stress intensity factor ΔK, the effective stress intensity factor ΔKeff, and the two driving force parameter proposed by Kujawski K∗.The finite element method is used to calculate the stress intensity factor of the specimens used in this investigation. The new stress intensity factor solution has been proved to be an alternative to explain contradictory results found in the literature.Fatigue crack propagation tests have been carried out on thin sheets with two different microstructural conditions and different load ratios. The influence of microstructural and mechanical variables has been analyzed using different mechanisms proposed in the literature. The influence of the compressive residual stress induced by the martensitic transformation is determined by using a model based on the proposal of McMeeking et al. The analyses demonstrate the necessity of including Kmax as a true driving force for the fatigue crack growth. A combined parameter is proposed to explain the effects of different variables on the fatigue crack growth rate curves. It is found that along with residual stresses, the microcracks and microvoids are other factor affecting the fatigue crack growth rate in the steel studied.Fil: Martelo Guarin, David Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Mateo, Antonio. Universidad Politécnica de Catalunya; EspañaFil: Chapetti, Mirco Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaElsevier2015-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/128573Martelo Guarin, David Fernando; Mateo, Antonio; Chapetti, Mirco Daniel; Fatigue crack growth of a metastable austenitic stainless steel; Elsevier; International Journal of Fatigue; 80; 7-2015; 406-4160142-1123CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0142112315002091?via%3Dihubinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijfatigue.2015.06.029info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:40Zoai:ri.conicet.gov.ar:11336/128573instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:40.759CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Fatigue crack growth of a metastable austenitic stainless steel
title Fatigue crack growth of a metastable austenitic stainless steel
spellingShingle Fatigue crack growth of a metastable austenitic stainless steel
Martelo Guarin, David Fernando
Fatigue crack propagation
Metastable austenitic stainless steel
Crack closure
Martensitic transformation
title_short Fatigue crack growth of a metastable austenitic stainless steel
title_full Fatigue crack growth of a metastable austenitic stainless steel
title_fullStr Fatigue crack growth of a metastable austenitic stainless steel
title_full_unstemmed Fatigue crack growth of a metastable austenitic stainless steel
title_sort Fatigue crack growth of a metastable austenitic stainless steel
dc.creator.none.fl_str_mv Martelo Guarin, David Fernando
Mateo, Antonio
Chapetti, Mirco Daniel
author Martelo Guarin, David Fernando
author_facet Martelo Guarin, David Fernando
Mateo, Antonio
Chapetti, Mirco Daniel
author_role author
author2 Mateo, Antonio
Chapetti, Mirco Daniel
author2_role author
author
dc.subject.none.fl_str_mv Fatigue crack propagation
Metastable austenitic stainless steel
Crack closure
Martensitic transformation
topic Fatigue crack propagation
Metastable austenitic stainless steel
Crack closure
Martensitic transformation
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The fatigue crack growth behavior of an austenitic metastable stainless steel AISI 301LN in the Paris region is investigated in this work. The fatigue crack growth rate curves are evaluated in terms of different parameters such as the range of stress intensity factor ΔK, the effective stress intensity factor ΔKeff, and the two driving force parameter proposed by Kujawski K∗.The finite element method is used to calculate the stress intensity factor of the specimens used in this investigation. The new stress intensity factor solution has been proved to be an alternative to explain contradictory results found in the literature.Fatigue crack propagation tests have been carried out on thin sheets with two different microstructural conditions and different load ratios. The influence of microstructural and mechanical variables has been analyzed using different mechanisms proposed in the literature. The influence of the compressive residual stress induced by the martensitic transformation is determined by using a model based on the proposal of McMeeking et al. The analyses demonstrate the necessity of including Kmax as a true driving force for the fatigue crack growth. A combined parameter is proposed to explain the effects of different variables on the fatigue crack growth rate curves. It is found that along with residual stresses, the microcracks and microvoids are other factor affecting the fatigue crack growth rate in the steel studied.
Fil: Martelo Guarin, David Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Mateo, Antonio. Universidad Politécnica de Catalunya; España
Fil: Chapetti, Mirco Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
description The fatigue crack growth behavior of an austenitic metastable stainless steel AISI 301LN in the Paris region is investigated in this work. The fatigue crack growth rate curves are evaluated in terms of different parameters such as the range of stress intensity factor ΔK, the effective stress intensity factor ΔKeff, and the two driving force parameter proposed by Kujawski K∗.The finite element method is used to calculate the stress intensity factor of the specimens used in this investigation. The new stress intensity factor solution has been proved to be an alternative to explain contradictory results found in the literature.Fatigue crack propagation tests have been carried out on thin sheets with two different microstructural conditions and different load ratios. The influence of microstructural and mechanical variables has been analyzed using different mechanisms proposed in the literature. The influence of the compressive residual stress induced by the martensitic transformation is determined by using a model based on the proposal of McMeeking et al. The analyses demonstrate the necessity of including Kmax as a true driving force for the fatigue crack growth. A combined parameter is proposed to explain the effects of different variables on the fatigue crack growth rate curves. It is found that along with residual stresses, the microcracks and microvoids are other factor affecting the fatigue crack growth rate in the steel studied.
publishDate 2015
dc.date.none.fl_str_mv 2015-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/128573
Martelo Guarin, David Fernando; Mateo, Antonio; Chapetti, Mirco Daniel; Fatigue crack growth of a metastable austenitic stainless steel; Elsevier; International Journal of Fatigue; 80; 7-2015; 406-416
0142-1123
CONICET Digital
CONICET
url http://hdl.handle.net/11336/128573
identifier_str_mv Martelo Guarin, David Fernando; Mateo, Antonio; Chapetti, Mirco Daniel; Fatigue crack growth of a metastable austenitic stainless steel; Elsevier; International Journal of Fatigue; 80; 7-2015; 406-416
0142-1123
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0142112315002091?via%3Dihub
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijfatigue.2015.06.029
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269652138328064
score 13.13397