A stochastic fire spread model for north Patagonia based on fire occurrence maps
- Autores
- Morales, Juan Manuel; Mermoz, Mónica Alicia; Gowda, Juan Janakiram Haridas; Kitzberger, Thomas
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Understanding fire spread in different ecosystems is of fundamental importance for conservation, management and anticipating the effects of environmental changes. Tailoring existing fire spread models to particular landscapes is challenging because it demands a substantial data collection effort. Here we develop an objective way to fit simple stochastic fire spread models based on readily available data from documented fire events (i.e. approximate ignition point, preexisting vegetation, final perimeter, topography, and average wind direction). We use a simulation-based approach founded on Approximate Bayesian Computation, which allows for a thorough exploration of parameter space as well as the quantification of uncertainty around best estimates. As illustration, we use data from nine fire events that occurred during dry years in northern Patagonia, Argentina. We found that fire spreads readily in shrublands, while forests tend to act as firebreaks. Topography has a strong effect not only because fire moves easily upslope but also because it modulates wind direction. Finally, aspect affects fire spread mainly in forests, probably due to its effects on fuel moisture. Simulating fire spread sampling parameters from the approximated joint posterior distribution resulted in individual fires roughly similar to the ones used for model fitting. Furthermore, the fitted model was able to produce simulated fire-size distributions in good agreement with the historical record for dry years in Nahuel Huapi National Park, Patagonia. The approach presented here can be used in places where standard fuel models have not yet been developed.
Fil: Morales, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Mermoz, Mónica Alicia. Administración de Parques Nacionales. Delegación Regional Patagonia; Argentina
Fil: Gowda, Juan Janakiram Haridas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Kitzberger, Thomas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina - Materia
-
Approximate Bayesian Computation
Nothofagus
Patagonia
Stochastic Fire Spread - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/38304
Ver los metadatos del registro completo
id |
CONICETDig_487776460c4cb9f233b23b879274a653 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/38304 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A stochastic fire spread model for north Patagonia based on fire occurrence mapsMorales, Juan ManuelMermoz, Mónica AliciaGowda, Juan Janakiram HaridasKitzberger, ThomasApproximate Bayesian ComputationNothofagusPatagoniaStochastic Fire Spreadhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Understanding fire spread in different ecosystems is of fundamental importance for conservation, management and anticipating the effects of environmental changes. Tailoring existing fire spread models to particular landscapes is challenging because it demands a substantial data collection effort. Here we develop an objective way to fit simple stochastic fire spread models based on readily available data from documented fire events (i.e. approximate ignition point, preexisting vegetation, final perimeter, topography, and average wind direction). We use a simulation-based approach founded on Approximate Bayesian Computation, which allows for a thorough exploration of parameter space as well as the quantification of uncertainty around best estimates. As illustration, we use data from nine fire events that occurred during dry years in northern Patagonia, Argentina. We found that fire spreads readily in shrublands, while forests tend to act as firebreaks. Topography has a strong effect not only because fire moves easily upslope but also because it modulates wind direction. Finally, aspect affects fire spread mainly in forests, probably due to its effects on fuel moisture. Simulating fire spread sampling parameters from the approximated joint posterior distribution resulted in individual fires roughly similar to the ones used for model fitting. Furthermore, the fitted model was able to produce simulated fire-size distributions in good agreement with the historical record for dry years in Nahuel Huapi National Park, Patagonia. The approach presented here can be used in places where standard fuel models have not yet been developed.Fil: Morales, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Mermoz, Mónica Alicia. Administración de Parques Nacionales. Delegación Regional Patagonia; ArgentinaFil: Gowda, Juan Janakiram Haridas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Kitzberger, Thomas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaElsevier Science2015-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/38304Morales, Juan Manuel; Mermoz, Mónica Alicia; Gowda, Juan Janakiram Haridas; Kitzberger, Thomas; A stochastic fire spread model for north Patagonia based on fire occurrence maps; Elsevier Science; Ecological Modelling; 300; 3-2015; 73-800304-3800CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0304380015000162info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ecolmodel.2015.01.004info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:29:59Zoai:ri.conicet.gov.ar:11336/38304instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:29:59.405CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A stochastic fire spread model for north Patagonia based on fire occurrence maps |
title |
A stochastic fire spread model for north Patagonia based on fire occurrence maps |
spellingShingle |
A stochastic fire spread model for north Patagonia based on fire occurrence maps Morales, Juan Manuel Approximate Bayesian Computation Nothofagus Patagonia Stochastic Fire Spread |
title_short |
A stochastic fire spread model for north Patagonia based on fire occurrence maps |
title_full |
A stochastic fire spread model for north Patagonia based on fire occurrence maps |
title_fullStr |
A stochastic fire spread model for north Patagonia based on fire occurrence maps |
title_full_unstemmed |
A stochastic fire spread model for north Patagonia based on fire occurrence maps |
title_sort |
A stochastic fire spread model for north Patagonia based on fire occurrence maps |
dc.creator.none.fl_str_mv |
Morales, Juan Manuel Mermoz, Mónica Alicia Gowda, Juan Janakiram Haridas Kitzberger, Thomas |
author |
Morales, Juan Manuel |
author_facet |
Morales, Juan Manuel Mermoz, Mónica Alicia Gowda, Juan Janakiram Haridas Kitzberger, Thomas |
author_role |
author |
author2 |
Mermoz, Mónica Alicia Gowda, Juan Janakiram Haridas Kitzberger, Thomas |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Approximate Bayesian Computation Nothofagus Patagonia Stochastic Fire Spread |
topic |
Approximate Bayesian Computation Nothofagus Patagonia Stochastic Fire Spread |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Understanding fire spread in different ecosystems is of fundamental importance for conservation, management and anticipating the effects of environmental changes. Tailoring existing fire spread models to particular landscapes is challenging because it demands a substantial data collection effort. Here we develop an objective way to fit simple stochastic fire spread models based on readily available data from documented fire events (i.e. approximate ignition point, preexisting vegetation, final perimeter, topography, and average wind direction). We use a simulation-based approach founded on Approximate Bayesian Computation, which allows for a thorough exploration of parameter space as well as the quantification of uncertainty around best estimates. As illustration, we use data from nine fire events that occurred during dry years in northern Patagonia, Argentina. We found that fire spreads readily in shrublands, while forests tend to act as firebreaks. Topography has a strong effect not only because fire moves easily upslope but also because it modulates wind direction. Finally, aspect affects fire spread mainly in forests, probably due to its effects on fuel moisture. Simulating fire spread sampling parameters from the approximated joint posterior distribution resulted in individual fires roughly similar to the ones used for model fitting. Furthermore, the fitted model was able to produce simulated fire-size distributions in good agreement with the historical record for dry years in Nahuel Huapi National Park, Patagonia. The approach presented here can be used in places where standard fuel models have not yet been developed. Fil: Morales, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina Fil: Mermoz, Mónica Alicia. Administración de Parques Nacionales. Delegación Regional Patagonia; Argentina Fil: Gowda, Juan Janakiram Haridas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina Fil: Kitzberger, Thomas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina |
description |
Understanding fire spread in different ecosystems is of fundamental importance for conservation, management and anticipating the effects of environmental changes. Tailoring existing fire spread models to particular landscapes is challenging because it demands a substantial data collection effort. Here we develop an objective way to fit simple stochastic fire spread models based on readily available data from documented fire events (i.e. approximate ignition point, preexisting vegetation, final perimeter, topography, and average wind direction). We use a simulation-based approach founded on Approximate Bayesian Computation, which allows for a thorough exploration of parameter space as well as the quantification of uncertainty around best estimates. As illustration, we use data from nine fire events that occurred during dry years in northern Patagonia, Argentina. We found that fire spreads readily in shrublands, while forests tend to act as firebreaks. Topography has a strong effect not only because fire moves easily upslope but also because it modulates wind direction. Finally, aspect affects fire spread mainly in forests, probably due to its effects on fuel moisture. Simulating fire spread sampling parameters from the approximated joint posterior distribution resulted in individual fires roughly similar to the ones used for model fitting. Furthermore, the fitted model was able to produce simulated fire-size distributions in good agreement with the historical record for dry years in Nahuel Huapi National Park, Patagonia. The approach presented here can be used in places where standard fuel models have not yet been developed. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/38304 Morales, Juan Manuel; Mermoz, Mónica Alicia; Gowda, Juan Janakiram Haridas; Kitzberger, Thomas; A stochastic fire spread model for north Patagonia based on fire occurrence maps; Elsevier Science; Ecological Modelling; 300; 3-2015; 73-80 0304-3800 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/38304 |
identifier_str_mv |
Morales, Juan Manuel; Mermoz, Mónica Alicia; Gowda, Juan Janakiram Haridas; Kitzberger, Thomas; A stochastic fire spread model for north Patagonia based on fire occurrence maps; Elsevier Science; Ecological Modelling; 300; 3-2015; 73-80 0304-3800 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0304380015000162 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ecolmodel.2015.01.004 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083438441922560 |
score |
13.22299 |