A stochastic fire spread model for north Patagonia based on fire occurrence maps

Autores
Morales, Juan Manuel; Mermoz, Mónica Alicia; Gowda, Juan Janakiram Haridas; Kitzberger, Thomas
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Understanding fire spread in different ecosystems is of fundamental importance for conservation, management and anticipating the effects of environmental changes. Tailoring existing fire spread models to particular landscapes is challenging because it demands a substantial data collection effort. Here we develop an objective way to fit simple stochastic fire spread models based on readily available data from documented fire events (i.e. approximate ignition point, preexisting vegetation, final perimeter, topography, and average wind direction). We use a simulation-based approach founded on Approximate Bayesian Computation, which allows for a thorough exploration of parameter space as well as the quantification of uncertainty around best estimates. As illustration, we use data from nine fire events that occurred during dry years in northern Patagonia, Argentina. We found that fire spreads readily in shrublands, while forests tend to act as firebreaks. Topography has a strong effect not only because fire moves easily upslope but also because it modulates wind direction. Finally, aspect affects fire spread mainly in forests, probably due to its effects on fuel moisture. Simulating fire spread sampling parameters from the approximated joint posterior distribution resulted in individual fires roughly similar to the ones used for model fitting. Furthermore, the fitted model was able to produce simulated fire-size distributions in good agreement with the historical record for dry years in Nahuel Huapi National Park, Patagonia. The approach presented here can be used in places where standard fuel models have not yet been developed.
Fil: Morales, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Mermoz, Mónica Alicia. Administración de Parques Nacionales. Delegación Regional Patagonia; Argentina
Fil: Gowda, Juan Janakiram Haridas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Kitzberger, Thomas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Materia
Approximate Bayesian Computation
Nothofagus
Patagonia
Stochastic Fire Spread
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/38304

id CONICETDig_487776460c4cb9f233b23b879274a653
oai_identifier_str oai:ri.conicet.gov.ar:11336/38304
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A stochastic fire spread model for north Patagonia based on fire occurrence mapsMorales, Juan ManuelMermoz, Mónica AliciaGowda, Juan Janakiram HaridasKitzberger, ThomasApproximate Bayesian ComputationNothofagusPatagoniaStochastic Fire Spreadhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Understanding fire spread in different ecosystems is of fundamental importance for conservation, management and anticipating the effects of environmental changes. Tailoring existing fire spread models to particular landscapes is challenging because it demands a substantial data collection effort. Here we develop an objective way to fit simple stochastic fire spread models based on readily available data from documented fire events (i.e. approximate ignition point, preexisting vegetation, final perimeter, topography, and average wind direction). We use a simulation-based approach founded on Approximate Bayesian Computation, which allows for a thorough exploration of parameter space as well as the quantification of uncertainty around best estimates. As illustration, we use data from nine fire events that occurred during dry years in northern Patagonia, Argentina. We found that fire spreads readily in shrublands, while forests tend to act as firebreaks. Topography has a strong effect not only because fire moves easily upslope but also because it modulates wind direction. Finally, aspect affects fire spread mainly in forests, probably due to its effects on fuel moisture. Simulating fire spread sampling parameters from the approximated joint posterior distribution resulted in individual fires roughly similar to the ones used for model fitting. Furthermore, the fitted model was able to produce simulated fire-size distributions in good agreement with the historical record for dry years in Nahuel Huapi National Park, Patagonia. The approach presented here can be used in places where standard fuel models have not yet been developed.Fil: Morales, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Mermoz, Mónica Alicia. Administración de Parques Nacionales. Delegación Regional Patagonia; ArgentinaFil: Gowda, Juan Janakiram Haridas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Kitzberger, Thomas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaElsevier Science2015-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/38304Morales, Juan Manuel; Mermoz, Mónica Alicia; Gowda, Juan Janakiram Haridas; Kitzberger, Thomas; A stochastic fire spread model for north Patagonia based on fire occurrence maps; Elsevier Science; Ecological Modelling; 300; 3-2015; 73-800304-3800CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0304380015000162info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ecolmodel.2015.01.004info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:29:59Zoai:ri.conicet.gov.ar:11336/38304instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:29:59.405CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A stochastic fire spread model for north Patagonia based on fire occurrence maps
title A stochastic fire spread model for north Patagonia based on fire occurrence maps
spellingShingle A stochastic fire spread model for north Patagonia based on fire occurrence maps
Morales, Juan Manuel
Approximate Bayesian Computation
Nothofagus
Patagonia
Stochastic Fire Spread
title_short A stochastic fire spread model for north Patagonia based on fire occurrence maps
title_full A stochastic fire spread model for north Patagonia based on fire occurrence maps
title_fullStr A stochastic fire spread model for north Patagonia based on fire occurrence maps
title_full_unstemmed A stochastic fire spread model for north Patagonia based on fire occurrence maps
title_sort A stochastic fire spread model for north Patagonia based on fire occurrence maps
dc.creator.none.fl_str_mv Morales, Juan Manuel
Mermoz, Mónica Alicia
Gowda, Juan Janakiram Haridas
Kitzberger, Thomas
author Morales, Juan Manuel
author_facet Morales, Juan Manuel
Mermoz, Mónica Alicia
Gowda, Juan Janakiram Haridas
Kitzberger, Thomas
author_role author
author2 Mermoz, Mónica Alicia
Gowda, Juan Janakiram Haridas
Kitzberger, Thomas
author2_role author
author
author
dc.subject.none.fl_str_mv Approximate Bayesian Computation
Nothofagus
Patagonia
Stochastic Fire Spread
topic Approximate Bayesian Computation
Nothofagus
Patagonia
Stochastic Fire Spread
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Understanding fire spread in different ecosystems is of fundamental importance for conservation, management and anticipating the effects of environmental changes. Tailoring existing fire spread models to particular landscapes is challenging because it demands a substantial data collection effort. Here we develop an objective way to fit simple stochastic fire spread models based on readily available data from documented fire events (i.e. approximate ignition point, preexisting vegetation, final perimeter, topography, and average wind direction). We use a simulation-based approach founded on Approximate Bayesian Computation, which allows for a thorough exploration of parameter space as well as the quantification of uncertainty around best estimates. As illustration, we use data from nine fire events that occurred during dry years in northern Patagonia, Argentina. We found that fire spreads readily in shrublands, while forests tend to act as firebreaks. Topography has a strong effect not only because fire moves easily upslope but also because it modulates wind direction. Finally, aspect affects fire spread mainly in forests, probably due to its effects on fuel moisture. Simulating fire spread sampling parameters from the approximated joint posterior distribution resulted in individual fires roughly similar to the ones used for model fitting. Furthermore, the fitted model was able to produce simulated fire-size distributions in good agreement with the historical record for dry years in Nahuel Huapi National Park, Patagonia. The approach presented here can be used in places where standard fuel models have not yet been developed.
Fil: Morales, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Mermoz, Mónica Alicia. Administración de Parques Nacionales. Delegación Regional Patagonia; Argentina
Fil: Gowda, Juan Janakiram Haridas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Kitzberger, Thomas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
description Understanding fire spread in different ecosystems is of fundamental importance for conservation, management and anticipating the effects of environmental changes. Tailoring existing fire spread models to particular landscapes is challenging because it demands a substantial data collection effort. Here we develop an objective way to fit simple stochastic fire spread models based on readily available data from documented fire events (i.e. approximate ignition point, preexisting vegetation, final perimeter, topography, and average wind direction). We use a simulation-based approach founded on Approximate Bayesian Computation, which allows for a thorough exploration of parameter space as well as the quantification of uncertainty around best estimates. As illustration, we use data from nine fire events that occurred during dry years in northern Patagonia, Argentina. We found that fire spreads readily in shrublands, while forests tend to act as firebreaks. Topography has a strong effect not only because fire moves easily upslope but also because it modulates wind direction. Finally, aspect affects fire spread mainly in forests, probably due to its effects on fuel moisture. Simulating fire spread sampling parameters from the approximated joint posterior distribution resulted in individual fires roughly similar to the ones used for model fitting. Furthermore, the fitted model was able to produce simulated fire-size distributions in good agreement with the historical record for dry years in Nahuel Huapi National Park, Patagonia. The approach presented here can be used in places where standard fuel models have not yet been developed.
publishDate 2015
dc.date.none.fl_str_mv 2015-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/38304
Morales, Juan Manuel; Mermoz, Mónica Alicia; Gowda, Juan Janakiram Haridas; Kitzberger, Thomas; A stochastic fire spread model for north Patagonia based on fire occurrence maps; Elsevier Science; Ecological Modelling; 300; 3-2015; 73-80
0304-3800
CONICET Digital
CONICET
url http://hdl.handle.net/11336/38304
identifier_str_mv Morales, Juan Manuel; Mermoz, Mónica Alicia; Gowda, Juan Janakiram Haridas; Kitzberger, Thomas; A stochastic fire spread model for north Patagonia based on fire occurrence maps; Elsevier Science; Ecological Modelling; 300; 3-2015; 73-80
0304-3800
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0304380015000162
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ecolmodel.2015.01.004
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083438441922560
score 13.22299