Using efficient parallelization in Graphic Processing Units to parameterize stochastic fire propagation models
- Autores
- Denham, Mónica Malen; Laneri, Karina Fabiana
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Wildfires are a major concern in Argentinian northwestern Patagonia and in many ecosystems and human societies around the world. We developed an efficient cellular automata model in Graphic Processing Units (GPUs) to simulate fire propagation. The graphical advantages of GPUs were exploited by overlapping wind direction, as well as vegetation, slope, and aspect maps, taking into account relevant landscape characteristics for fire propagation. Stochastic propagation was performed with a probability model that depends on aspect, slope, wind direction and vegetation type. Implementing a Genetic Algorithm search strategy we show, using simulated fires, that we recover the five parameter values that characterize fire propagation. The efficiency of the fire simulation procedure allowed us to also estimate the fire ignition point when it is unknown as well as its associated uncertainty, making this approach suitable for the analysis of fire spread based on maps of burnt areas without knowing the point of origin of the fires or how they spread.
Fil: Denham, Mónica Malen. Universidad Nacional de Río Negro. Sede Andina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Laneri, Karina Fabiana. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
FOREST FIRE MODEL
FOREST FIRE SPREAD SIMULATIONS
GPU - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/97288
Ver los metadatos del registro completo
id |
CONICETDig_0c25060d5523f8e52689639944cd3ca8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/97288 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Using efficient parallelization in Graphic Processing Units to parameterize stochastic fire propagation modelsDenham, Mónica MalenLaneri, Karina FabianaFOREST FIRE MODELFOREST FIRE SPREAD SIMULATIONSGPUhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Wildfires are a major concern in Argentinian northwestern Patagonia and in many ecosystems and human societies around the world. We developed an efficient cellular automata model in Graphic Processing Units (GPUs) to simulate fire propagation. The graphical advantages of GPUs were exploited by overlapping wind direction, as well as vegetation, slope, and aspect maps, taking into account relevant landscape characteristics for fire propagation. Stochastic propagation was performed with a probability model that depends on aspect, slope, wind direction and vegetation type. Implementing a Genetic Algorithm search strategy we show, using simulated fires, that we recover the five parameter values that characterize fire propagation. The efficiency of the fire simulation procedure allowed us to also estimate the fire ignition point when it is unknown as well as its associated uncertainty, making this approach suitable for the analysis of fire spread based on maps of burnt areas without knowing the point of origin of the fires or how they spread.Fil: Denham, Mónica Malen. Universidad Nacional de Río Negro. Sede Andina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Laneri, Karina Fabiana. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2018-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/97288Denham, Mónica Malen; Laneri, Karina Fabiana; Using efficient parallelization in Graphic Processing Units to parameterize stochastic fire propagation models; Elsevier; Journal of Computational Science; 25; 3-2018; 76-881877-7503CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jocs.2018.02.007info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1877750317308773info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:04:28Zoai:ri.conicet.gov.ar:11336/97288instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:04:29.047CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Using efficient parallelization in Graphic Processing Units to parameterize stochastic fire propagation models |
title |
Using efficient parallelization in Graphic Processing Units to parameterize stochastic fire propagation models |
spellingShingle |
Using efficient parallelization in Graphic Processing Units to parameterize stochastic fire propagation models Denham, Mónica Malen FOREST FIRE MODEL FOREST FIRE SPREAD SIMULATIONS GPU |
title_short |
Using efficient parallelization in Graphic Processing Units to parameterize stochastic fire propagation models |
title_full |
Using efficient parallelization in Graphic Processing Units to parameterize stochastic fire propagation models |
title_fullStr |
Using efficient parallelization in Graphic Processing Units to parameterize stochastic fire propagation models |
title_full_unstemmed |
Using efficient parallelization in Graphic Processing Units to parameterize stochastic fire propagation models |
title_sort |
Using efficient parallelization in Graphic Processing Units to parameterize stochastic fire propagation models |
dc.creator.none.fl_str_mv |
Denham, Mónica Malen Laneri, Karina Fabiana |
author |
Denham, Mónica Malen |
author_facet |
Denham, Mónica Malen Laneri, Karina Fabiana |
author_role |
author |
author2 |
Laneri, Karina Fabiana |
author2_role |
author |
dc.subject.none.fl_str_mv |
FOREST FIRE MODEL FOREST FIRE SPREAD SIMULATIONS GPU |
topic |
FOREST FIRE MODEL FOREST FIRE SPREAD SIMULATIONS GPU |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Wildfires are a major concern in Argentinian northwestern Patagonia and in many ecosystems and human societies around the world. We developed an efficient cellular automata model in Graphic Processing Units (GPUs) to simulate fire propagation. The graphical advantages of GPUs were exploited by overlapping wind direction, as well as vegetation, slope, and aspect maps, taking into account relevant landscape characteristics for fire propagation. Stochastic propagation was performed with a probability model that depends on aspect, slope, wind direction and vegetation type. Implementing a Genetic Algorithm search strategy we show, using simulated fires, that we recover the five parameter values that characterize fire propagation. The efficiency of the fire simulation procedure allowed us to also estimate the fire ignition point when it is unknown as well as its associated uncertainty, making this approach suitable for the analysis of fire spread based on maps of burnt areas without knowing the point of origin of the fires or how they spread. Fil: Denham, Mónica Malen. Universidad Nacional de Río Negro. Sede Andina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Laneri, Karina Fabiana. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Wildfires are a major concern in Argentinian northwestern Patagonia and in many ecosystems and human societies around the world. We developed an efficient cellular automata model in Graphic Processing Units (GPUs) to simulate fire propagation. The graphical advantages of GPUs were exploited by overlapping wind direction, as well as vegetation, slope, and aspect maps, taking into account relevant landscape characteristics for fire propagation. Stochastic propagation was performed with a probability model that depends on aspect, slope, wind direction and vegetation type. Implementing a Genetic Algorithm search strategy we show, using simulated fires, that we recover the five parameter values that characterize fire propagation. The efficiency of the fire simulation procedure allowed us to also estimate the fire ignition point when it is unknown as well as its associated uncertainty, making this approach suitable for the analysis of fire spread based on maps of burnt areas without knowing the point of origin of the fires or how they spread. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/97288 Denham, Mónica Malen; Laneri, Karina Fabiana; Using efficient parallelization in Graphic Processing Units to parameterize stochastic fire propagation models; Elsevier; Journal of Computational Science; 25; 3-2018; 76-88 1877-7503 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/97288 |
identifier_str_mv |
Denham, Mónica Malen; Laneri, Karina Fabiana; Using efficient parallelization in Graphic Processing Units to parameterize stochastic fire propagation models; Elsevier; Journal of Computational Science; 25; 3-2018; 76-88 1877-7503 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jocs.2018.02.007 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1877750317308773 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980150233268224 |
score |
13.004268 |