Geometrical localization analysis of gradient-dependent parabolic Drucker -Prager elastoplasticity

Autores
Vrech, Sonia Mariel; Etse, Jose Guillermo
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work the geometrical method for the analysis of the localization properties of the thermodynamically consistent gradient--dependent parabolic Drucker-Prager elastoplastic model is presented. From the analytical solution of the discontinuous bifurcation condition of small strain gradient-dependent elastoplasticity the elliptical envelope for localization is formulated in the coordinates of Mohr. The tangency condition of the localization ellipse with the major principal circle of Mohr defines the type of failure (diffuse or localized) and the critical directions for discontinuous bifurcation. The results of the geometrical localization analysis illustrate the capability of the gradient--dependent elastoplastic Drucker--Prager material to suppress the discontinuous bifurcations of the related local or classical elastoplastic model formulation that take place when the adopted hardening/softening modulus H equals the critical (maximum) one for localization Hc. On the other hand, the results in this work also demonstrate that the thermodynamically consistent gradient--dependent Drucker--Prager model may lead to discontinuous bifurcation not only when the characteristic length l turns zero but also when H < Hc.
Fil: Vrech, Sonia Mariel. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Centro de Métodos Numéricos y Computacionales en Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
Fil: Etse, Jose Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Centro de Métodos Numéricos y Computacionales en Ingeniería; Argentina
Materia
CONSTITUTIVE
MODEL
GRADIENT
ELASTOPLASTICITY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/84974

id CONICETDig_485d4b4253f46cba02fb2393c4173d93
oai_identifier_str oai:ri.conicet.gov.ar:11336/84974
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Geometrical localization analysis of gradient-dependent parabolic Drucker -Prager elastoplasticityVrech, Sonia MarielEtse, Jose GuillermoCONSTITUTIVEMODELGRADIENTELASTOPLASTICITYhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2In this work the geometrical method for the analysis of the localization properties of the thermodynamically consistent gradient--dependent parabolic Drucker-Prager elastoplastic model is presented. From the analytical solution of the discontinuous bifurcation condition of small strain gradient-dependent elastoplasticity the elliptical envelope for localization is formulated in the coordinates of Mohr. The tangency condition of the localization ellipse with the major principal circle of Mohr defines the type of failure (diffuse or localized) and the critical directions for discontinuous bifurcation. The results of the geometrical localization analysis illustrate the capability of the gradient--dependent elastoplastic Drucker--Prager material to suppress the discontinuous bifurcations of the related local or classical elastoplastic model formulation that take place when the adopted hardening/softening modulus H equals the critical (maximum) one for localization Hc. On the other hand, the results in this work also demonstrate that the thermodynamically consistent gradient--dependent Drucker--Prager model may lead to discontinuous bifurcation not only when the characteristic length l turns zero but also when H < Hc.Fil: Vrech, Sonia Mariel. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Centro de Métodos Numéricos y Computacionales en Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Etse, Jose Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Centro de Métodos Numéricos y Computacionales en Ingeniería; ArgentinaPergamon-Elsevier Science Ltd2006-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84974Vrech, Sonia Mariel; Etse, Jose Guillermo; Geometrical localization analysis of gradient-dependent parabolic Drucker -Prager elastoplasticity; Pergamon-Elsevier Science Ltd; International Journal of Plasticity; 22; 5; 12-2006; 943-9640749-6419CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijplas.2005.07.002info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0749641905001282?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:26:46Zoai:ri.conicet.gov.ar:11336/84974instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:26:46.816CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Geometrical localization analysis of gradient-dependent parabolic Drucker -Prager elastoplasticity
title Geometrical localization analysis of gradient-dependent parabolic Drucker -Prager elastoplasticity
spellingShingle Geometrical localization analysis of gradient-dependent parabolic Drucker -Prager elastoplasticity
Vrech, Sonia Mariel
CONSTITUTIVE
MODEL
GRADIENT
ELASTOPLASTICITY
title_short Geometrical localization analysis of gradient-dependent parabolic Drucker -Prager elastoplasticity
title_full Geometrical localization analysis of gradient-dependent parabolic Drucker -Prager elastoplasticity
title_fullStr Geometrical localization analysis of gradient-dependent parabolic Drucker -Prager elastoplasticity
title_full_unstemmed Geometrical localization analysis of gradient-dependent parabolic Drucker -Prager elastoplasticity
title_sort Geometrical localization analysis of gradient-dependent parabolic Drucker -Prager elastoplasticity
dc.creator.none.fl_str_mv Vrech, Sonia Mariel
Etse, Jose Guillermo
author Vrech, Sonia Mariel
author_facet Vrech, Sonia Mariel
Etse, Jose Guillermo
author_role author
author2 Etse, Jose Guillermo
author2_role author
dc.subject.none.fl_str_mv CONSTITUTIVE
MODEL
GRADIENT
ELASTOPLASTICITY
topic CONSTITUTIVE
MODEL
GRADIENT
ELASTOPLASTICITY
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In this work the geometrical method for the analysis of the localization properties of the thermodynamically consistent gradient--dependent parabolic Drucker-Prager elastoplastic model is presented. From the analytical solution of the discontinuous bifurcation condition of small strain gradient-dependent elastoplasticity the elliptical envelope for localization is formulated in the coordinates of Mohr. The tangency condition of the localization ellipse with the major principal circle of Mohr defines the type of failure (diffuse or localized) and the critical directions for discontinuous bifurcation. The results of the geometrical localization analysis illustrate the capability of the gradient--dependent elastoplastic Drucker--Prager material to suppress the discontinuous bifurcations of the related local or classical elastoplastic model formulation that take place when the adopted hardening/softening modulus H equals the critical (maximum) one for localization Hc. On the other hand, the results in this work also demonstrate that the thermodynamically consistent gradient--dependent Drucker--Prager model may lead to discontinuous bifurcation not only when the characteristic length l turns zero but also when H < Hc.
Fil: Vrech, Sonia Mariel. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Centro de Métodos Numéricos y Computacionales en Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
Fil: Etse, Jose Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Centro de Métodos Numéricos y Computacionales en Ingeniería; Argentina
description In this work the geometrical method for the analysis of the localization properties of the thermodynamically consistent gradient--dependent parabolic Drucker-Prager elastoplastic model is presented. From the analytical solution of the discontinuous bifurcation condition of small strain gradient-dependent elastoplasticity the elliptical envelope for localization is formulated in the coordinates of Mohr. The tangency condition of the localization ellipse with the major principal circle of Mohr defines the type of failure (diffuse or localized) and the critical directions for discontinuous bifurcation. The results of the geometrical localization analysis illustrate the capability of the gradient--dependent elastoplastic Drucker--Prager material to suppress the discontinuous bifurcations of the related local or classical elastoplastic model formulation that take place when the adopted hardening/softening modulus H equals the critical (maximum) one for localization Hc. On the other hand, the results in this work also demonstrate that the thermodynamically consistent gradient--dependent Drucker--Prager model may lead to discontinuous bifurcation not only when the characteristic length l turns zero but also when H < Hc.
publishDate 2006
dc.date.none.fl_str_mv 2006-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/84974
Vrech, Sonia Mariel; Etse, Jose Guillermo; Geometrical localization analysis of gradient-dependent parabolic Drucker -Prager elastoplasticity; Pergamon-Elsevier Science Ltd; International Journal of Plasticity; 22; 5; 12-2006; 943-964
0749-6419
CONICET Digital
CONICET
url http://hdl.handle.net/11336/84974
identifier_str_mv Vrech, Sonia Mariel; Etse, Jose Guillermo; Geometrical localization analysis of gradient-dependent parabolic Drucker -Prager elastoplasticity; Pergamon-Elsevier Science Ltd; International Journal of Plasticity; 22; 5; 12-2006; 943-964
0749-6419
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijplas.2005.07.002
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0749641905001282?via%3Dihub
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614269102981120
score 13.069144