Geometrical localization analysis of gradient-dependent parabolic Drucker -Prager elastoplasticity
- Autores
- Vrech, Sonia Mariel; Etse, Jose Guillermo
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work the geometrical method for the analysis of the localization properties of the thermodynamically consistent gradient--dependent parabolic Drucker-Prager elastoplastic model is presented. From the analytical solution of the discontinuous bifurcation condition of small strain gradient-dependent elastoplasticity the elliptical envelope for localization is formulated in the coordinates of Mohr. The tangency condition of the localization ellipse with the major principal circle of Mohr defines the type of failure (diffuse or localized) and the critical directions for discontinuous bifurcation. The results of the geometrical localization analysis illustrate the capability of the gradient--dependent elastoplastic Drucker--Prager material to suppress the discontinuous bifurcations of the related local or classical elastoplastic model formulation that take place when the adopted hardening/softening modulus H equals the critical (maximum) one for localization Hc. On the other hand, the results in this work also demonstrate that the thermodynamically consistent gradient--dependent Drucker--Prager model may lead to discontinuous bifurcation not only when the characteristic length l turns zero but also when H < Hc.
Fil: Vrech, Sonia Mariel. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Centro de Métodos Numéricos y Computacionales en Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
Fil: Etse, Jose Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Centro de Métodos Numéricos y Computacionales en Ingeniería; Argentina - Materia
-
CONSTITUTIVE
MODEL
GRADIENT
ELASTOPLASTICITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/84974
Ver los metadatos del registro completo
id |
CONICETDig_485d4b4253f46cba02fb2393c4173d93 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/84974 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Geometrical localization analysis of gradient-dependent parabolic Drucker -Prager elastoplasticityVrech, Sonia MarielEtse, Jose GuillermoCONSTITUTIVEMODELGRADIENTELASTOPLASTICITYhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2In this work the geometrical method for the analysis of the localization properties of the thermodynamically consistent gradient--dependent parabolic Drucker-Prager elastoplastic model is presented. From the analytical solution of the discontinuous bifurcation condition of small strain gradient-dependent elastoplasticity the elliptical envelope for localization is formulated in the coordinates of Mohr. The tangency condition of the localization ellipse with the major principal circle of Mohr defines the type of failure (diffuse or localized) and the critical directions for discontinuous bifurcation. The results of the geometrical localization analysis illustrate the capability of the gradient--dependent elastoplastic Drucker--Prager material to suppress the discontinuous bifurcations of the related local or classical elastoplastic model formulation that take place when the adopted hardening/softening modulus H equals the critical (maximum) one for localization Hc. On the other hand, the results in this work also demonstrate that the thermodynamically consistent gradient--dependent Drucker--Prager model may lead to discontinuous bifurcation not only when the characteristic length l turns zero but also when H < Hc.Fil: Vrech, Sonia Mariel. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Centro de Métodos Numéricos y Computacionales en Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Etse, Jose Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Centro de Métodos Numéricos y Computacionales en Ingeniería; ArgentinaPergamon-Elsevier Science Ltd2006-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84974Vrech, Sonia Mariel; Etse, Jose Guillermo; Geometrical localization analysis of gradient-dependent parabolic Drucker -Prager elastoplasticity; Pergamon-Elsevier Science Ltd; International Journal of Plasticity; 22; 5; 12-2006; 943-9640749-6419CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijplas.2005.07.002info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0749641905001282?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:26:46Zoai:ri.conicet.gov.ar:11336/84974instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:26:46.816CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Geometrical localization analysis of gradient-dependent parabolic Drucker -Prager elastoplasticity |
title |
Geometrical localization analysis of gradient-dependent parabolic Drucker -Prager elastoplasticity |
spellingShingle |
Geometrical localization analysis of gradient-dependent parabolic Drucker -Prager elastoplasticity Vrech, Sonia Mariel CONSTITUTIVE MODEL GRADIENT ELASTOPLASTICITY |
title_short |
Geometrical localization analysis of gradient-dependent parabolic Drucker -Prager elastoplasticity |
title_full |
Geometrical localization analysis of gradient-dependent parabolic Drucker -Prager elastoplasticity |
title_fullStr |
Geometrical localization analysis of gradient-dependent parabolic Drucker -Prager elastoplasticity |
title_full_unstemmed |
Geometrical localization analysis of gradient-dependent parabolic Drucker -Prager elastoplasticity |
title_sort |
Geometrical localization analysis of gradient-dependent parabolic Drucker -Prager elastoplasticity |
dc.creator.none.fl_str_mv |
Vrech, Sonia Mariel Etse, Jose Guillermo |
author |
Vrech, Sonia Mariel |
author_facet |
Vrech, Sonia Mariel Etse, Jose Guillermo |
author_role |
author |
author2 |
Etse, Jose Guillermo |
author2_role |
author |
dc.subject.none.fl_str_mv |
CONSTITUTIVE MODEL GRADIENT ELASTOPLASTICITY |
topic |
CONSTITUTIVE MODEL GRADIENT ELASTOPLASTICITY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this work the geometrical method for the analysis of the localization properties of the thermodynamically consistent gradient--dependent parabolic Drucker-Prager elastoplastic model is presented. From the analytical solution of the discontinuous bifurcation condition of small strain gradient-dependent elastoplasticity the elliptical envelope for localization is formulated in the coordinates of Mohr. The tangency condition of the localization ellipse with the major principal circle of Mohr defines the type of failure (diffuse or localized) and the critical directions for discontinuous bifurcation. The results of the geometrical localization analysis illustrate the capability of the gradient--dependent elastoplastic Drucker--Prager material to suppress the discontinuous bifurcations of the related local or classical elastoplastic model formulation that take place when the adopted hardening/softening modulus H equals the critical (maximum) one for localization Hc. On the other hand, the results in this work also demonstrate that the thermodynamically consistent gradient--dependent Drucker--Prager model may lead to discontinuous bifurcation not only when the characteristic length l turns zero but also when H < Hc. Fil: Vrech, Sonia Mariel. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Centro de Métodos Numéricos y Computacionales en Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina Fil: Etse, Jose Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Centro de Métodos Numéricos y Computacionales en Ingeniería; Argentina |
description |
In this work the geometrical method for the analysis of the localization properties of the thermodynamically consistent gradient--dependent parabolic Drucker-Prager elastoplastic model is presented. From the analytical solution of the discontinuous bifurcation condition of small strain gradient-dependent elastoplasticity the elliptical envelope for localization is formulated in the coordinates of Mohr. The tangency condition of the localization ellipse with the major principal circle of Mohr defines the type of failure (diffuse or localized) and the critical directions for discontinuous bifurcation. The results of the geometrical localization analysis illustrate the capability of the gradient--dependent elastoplastic Drucker--Prager material to suppress the discontinuous bifurcations of the related local or classical elastoplastic model formulation that take place when the adopted hardening/softening modulus H equals the critical (maximum) one for localization Hc. On the other hand, the results in this work also demonstrate that the thermodynamically consistent gradient--dependent Drucker--Prager model may lead to discontinuous bifurcation not only when the characteristic length l turns zero but also when H < Hc. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/84974 Vrech, Sonia Mariel; Etse, Jose Guillermo; Geometrical localization analysis of gradient-dependent parabolic Drucker -Prager elastoplasticity; Pergamon-Elsevier Science Ltd; International Journal of Plasticity; 22; 5; 12-2006; 943-964 0749-6419 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/84974 |
identifier_str_mv |
Vrech, Sonia Mariel; Etse, Jose Guillermo; Geometrical localization analysis of gradient-dependent parabolic Drucker -Prager elastoplasticity; Pergamon-Elsevier Science Ltd; International Journal of Plasticity; 22; 5; 12-2006; 943-964 0749-6419 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijplas.2005.07.002 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0749641905001282?via%3Dihub |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614269102981120 |
score |
13.069144 |