Gradient and fracture energy-based plasticity theory for quasi-brittle materials like concrete
- Autores
- Vrech, Sonia Mariel; Etse, Jose Guillermo
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work a thermodynamically consistent non-local gradient and fracture energy-based plasticity theory is proposed to simulate the failure behavior of concrete. The model incorporates two characteristic lengths, one due to the microcrack opening process and the other due to the non-local degradation process of the continuum in between cracks. The failure behavior of quasi-brittle materials like concrete is controlled by a decohesion mechanism expressed in terms of a combined fracture-energy and non-local gradient-based softening formulation. The two resulting characteristic lengths are functions of the stress state to describe the increasing non-locality of the degradation process as well as the reducing distance between microcracks with the increment of the confining pressure. In this way the transition from brittle to ductile post-peak response of quasi-brittle materials like concrete is realistically predicted. The thermodynamically consistent formulation covers both the hardening and softening regimes of the proposed constitutive model. The compressive meridian of the model maximum strength criterion agrees with that of Leon while constant and maximum value is adopted for the eccentricity leading to the circular forms of the failure surface deviatoric views similarly to the Drucker-Prager criterion. A volumetric non-associated flow rule is taken into account to appropriately describe the inelastic behavior of concrete in the low confinement regime. The predictive capabilities of the proposed constitutive formulation are tested against experimental results on concrete specimens in tensile and compressive regimes.
Fil: Vrech, Sonia Mariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Centro de Métodos Numéricos y Computacionales en Ingeniería; Argentina
Fil: Etse, Jose Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Centro de Métodos Numéricos y Computacionales en Ingeniería; Argentina - Materia
-
Fracture Energy
Gradient Elastoplasticity
Non-Local Constitutive Model
Quasi-Brittle Materials - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/75174
Ver los metadatos del registro completo
id |
CONICETDig_12e2caa8997943eefd673fccf6f519e3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/75174 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Gradient and fracture energy-based plasticity theory for quasi-brittle materials like concreteVrech, Sonia MarielEtse, Jose GuillermoFracture EnergyGradient ElastoplasticityNon-Local Constitutive ModelQuasi-Brittle MaterialsIn this work a thermodynamically consistent non-local gradient and fracture energy-based plasticity theory is proposed to simulate the failure behavior of concrete. The model incorporates two characteristic lengths, one due to the microcrack opening process and the other due to the non-local degradation process of the continuum in between cracks. The failure behavior of quasi-brittle materials like concrete is controlled by a decohesion mechanism expressed in terms of a combined fracture-energy and non-local gradient-based softening formulation. The two resulting characteristic lengths are functions of the stress state to describe the increasing non-locality of the degradation process as well as the reducing distance between microcracks with the increment of the confining pressure. In this way the transition from brittle to ductile post-peak response of quasi-brittle materials like concrete is realistically predicted. The thermodynamically consistent formulation covers both the hardening and softening regimes of the proposed constitutive model. The compressive meridian of the model maximum strength criterion agrees with that of Leon while constant and maximum value is adopted for the eccentricity leading to the circular forms of the failure surface deviatoric views similarly to the Drucker-Prager criterion. A volumetric non-associated flow rule is taken into account to appropriately describe the inelastic behavior of concrete in the low confinement regime. The predictive capabilities of the proposed constitutive formulation are tested against experimental results on concrete specimens in tensile and compressive regimes.Fil: Vrech, Sonia Mariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Centro de Métodos Numéricos y Computacionales en Ingeniería; ArgentinaFil: Etse, Jose Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Centro de Métodos Numéricos y Computacionales en Ingeniería; ArgentinaElsevier Science Sa2009-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/75174Vrech, Sonia Mariel; Etse, Jose Guillermo; Gradient and fracture energy-based plasticity theory for quasi-brittle materials like concrete; Elsevier Science Sa; Computer Methods in Applied Mechanics and Engineering; 199; 1-4; 12-2009; 136-1470045-7825CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0045782509003326info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cma.2009.09.025info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:48:57Zoai:ri.conicet.gov.ar:11336/75174instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:48:58.017CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Gradient and fracture energy-based plasticity theory for quasi-brittle materials like concrete |
title |
Gradient and fracture energy-based plasticity theory for quasi-brittle materials like concrete |
spellingShingle |
Gradient and fracture energy-based plasticity theory for quasi-brittle materials like concrete Vrech, Sonia Mariel Fracture Energy Gradient Elastoplasticity Non-Local Constitutive Model Quasi-Brittle Materials |
title_short |
Gradient and fracture energy-based plasticity theory for quasi-brittle materials like concrete |
title_full |
Gradient and fracture energy-based plasticity theory for quasi-brittle materials like concrete |
title_fullStr |
Gradient and fracture energy-based plasticity theory for quasi-brittle materials like concrete |
title_full_unstemmed |
Gradient and fracture energy-based plasticity theory for quasi-brittle materials like concrete |
title_sort |
Gradient and fracture energy-based plasticity theory for quasi-brittle materials like concrete |
dc.creator.none.fl_str_mv |
Vrech, Sonia Mariel Etse, Jose Guillermo |
author |
Vrech, Sonia Mariel |
author_facet |
Vrech, Sonia Mariel Etse, Jose Guillermo |
author_role |
author |
author2 |
Etse, Jose Guillermo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Fracture Energy Gradient Elastoplasticity Non-Local Constitutive Model Quasi-Brittle Materials |
topic |
Fracture Energy Gradient Elastoplasticity Non-Local Constitutive Model Quasi-Brittle Materials |
dc.description.none.fl_txt_mv |
In this work a thermodynamically consistent non-local gradient and fracture energy-based plasticity theory is proposed to simulate the failure behavior of concrete. The model incorporates two characteristic lengths, one due to the microcrack opening process and the other due to the non-local degradation process of the continuum in between cracks. The failure behavior of quasi-brittle materials like concrete is controlled by a decohesion mechanism expressed in terms of a combined fracture-energy and non-local gradient-based softening formulation. The two resulting characteristic lengths are functions of the stress state to describe the increasing non-locality of the degradation process as well as the reducing distance between microcracks with the increment of the confining pressure. In this way the transition from brittle to ductile post-peak response of quasi-brittle materials like concrete is realistically predicted. The thermodynamically consistent formulation covers both the hardening and softening regimes of the proposed constitutive model. The compressive meridian of the model maximum strength criterion agrees with that of Leon while constant and maximum value is adopted for the eccentricity leading to the circular forms of the failure surface deviatoric views similarly to the Drucker-Prager criterion. A volumetric non-associated flow rule is taken into account to appropriately describe the inelastic behavior of concrete in the low confinement regime. The predictive capabilities of the proposed constitutive formulation are tested against experimental results on concrete specimens in tensile and compressive regimes. Fil: Vrech, Sonia Mariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Centro de Métodos Numéricos y Computacionales en Ingeniería; Argentina Fil: Etse, Jose Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Centro de Métodos Numéricos y Computacionales en Ingeniería; Argentina |
description |
In this work a thermodynamically consistent non-local gradient and fracture energy-based plasticity theory is proposed to simulate the failure behavior of concrete. The model incorporates two characteristic lengths, one due to the microcrack opening process and the other due to the non-local degradation process of the continuum in between cracks. The failure behavior of quasi-brittle materials like concrete is controlled by a decohesion mechanism expressed in terms of a combined fracture-energy and non-local gradient-based softening formulation. The two resulting characteristic lengths are functions of the stress state to describe the increasing non-locality of the degradation process as well as the reducing distance between microcracks with the increment of the confining pressure. In this way the transition from brittle to ductile post-peak response of quasi-brittle materials like concrete is realistically predicted. The thermodynamically consistent formulation covers both the hardening and softening regimes of the proposed constitutive model. The compressive meridian of the model maximum strength criterion agrees with that of Leon while constant and maximum value is adopted for the eccentricity leading to the circular forms of the failure surface deviatoric views similarly to the Drucker-Prager criterion. A volumetric non-associated flow rule is taken into account to appropriately describe the inelastic behavior of concrete in the low confinement regime. The predictive capabilities of the proposed constitutive formulation are tested against experimental results on concrete specimens in tensile and compressive regimes. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/75174 Vrech, Sonia Mariel; Etse, Jose Guillermo; Gradient and fracture energy-based plasticity theory for quasi-brittle materials like concrete; Elsevier Science Sa; Computer Methods in Applied Mechanics and Engineering; 199; 1-4; 12-2009; 136-147 0045-7825 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/75174 |
identifier_str_mv |
Vrech, Sonia Mariel; Etse, Jose Guillermo; Gradient and fracture energy-based plasticity theory for quasi-brittle materials like concrete; Elsevier Science Sa; Computer Methods in Applied Mechanics and Engineering; 199; 1-4; 12-2009; 136-147 0045-7825 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0045782509003326 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cma.2009.09.025 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Sa |
publisher.none.fl_str_mv |
Elsevier Science Sa |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613518635040768 |
score |
13.070432 |