Some theoretical questions about the G-particle-hole hypervirial equation

Autores
Valdemoro, C.; Alcoba, Diego Ricardo; Tel, L. M.; Pérez Romero, E.
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
By applying a matrix contracting mapping, involving the G-particle-hole operator, to the matrix representation of the N-electron density hypervirial equation, one obtains the G-particle-hole hypervirial (GHV) equation (Alcoba, et al., Int J Quant Chem 2009, 109, 3178). This equation may be solved by exploiting the stationary property of the hypervirials (Hirschfelder, J Chem Phys 1960, 33, 1462; Fernández and Castro, Hypervirial Theorems., Lecture Notes in Chemistry Series 43, 1987) and by following the general lines of Mazziotti's approach for solving the anti-Hermitian contracted Schrödinger equation (Mazziotti, Phys Rev Lett 2006, 97, 143002), which can be identified with the second-order density hypervirial equation. The accuracy of the results obtained with this method when studying the ground-state of a set of atoms and molecules was excellent when compared with the equivalent full configuration interaction (FCI) quantities. Here, we analyze two open questions: under what conditions the solution of the GHV equation corresponds to a Hamiltonian eigenstate, and the possibility of extending the field of application of this methodology to the study of excited and multiconfigurational states. A brief account of the main difficulties that arise when studying this type of states is described. © 2010 Wiley Periodicals, Inc.
Fil: Valdemoro, C.. Consejo Superior de Investigaciones Científicas; España
Fil: Alcoba, Diego Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Tel, L. M.. Universidad de Salamanca; España
Fil: Pérez Romero, E.. Universidad de Salamanca; España
Materia
Contracted SchrÖDinger Equation
Correlation Matrix
Electronic Correlation Effects
G-Particle-Hole Matrix
Reduced Density Matrix
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/56959

id CONICETDig_482dd0dcb31912b89e92c3772a1bbeb8
oai_identifier_str oai:ri.conicet.gov.ar:11336/56959
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Some theoretical questions about the G-particle-hole hypervirial equationValdemoro, C.Alcoba, Diego RicardoTel, L. M.Pérez Romero, E.Contracted SchrÖDinger EquationCorrelation MatrixElectronic Correlation EffectsG-Particle-Hole MatrixReduced Density Matrixhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1By applying a matrix contracting mapping, involving the G-particle-hole operator, to the matrix representation of the N-electron density hypervirial equation, one obtains the G-particle-hole hypervirial (GHV) equation (Alcoba, et al., Int J Quant Chem 2009, 109, 3178). This equation may be solved by exploiting the stationary property of the hypervirials (Hirschfelder, J Chem Phys 1960, 33, 1462; Fernández and Castro, Hypervirial Theorems., Lecture Notes in Chemistry Series 43, 1987) and by following the general lines of Mazziotti's approach for solving the anti-Hermitian contracted Schrödinger equation (Mazziotti, Phys Rev Lett 2006, 97, 143002), which can be identified with the second-order density hypervirial equation. The accuracy of the results obtained with this method when studying the ground-state of a set of atoms and molecules was excellent when compared with the equivalent full configuration interaction (FCI) quantities. Here, we analyze two open questions: under what conditions the solution of the GHV equation corresponds to a Hamiltonian eigenstate, and the possibility of extending the field of application of this methodology to the study of excited and multiconfigurational states. A brief account of the main difficulties that arise when studying this type of states is described. © 2010 Wiley Periodicals, Inc.Fil: Valdemoro, C.. Consejo Superior de Investigaciones Científicas; EspañaFil: Alcoba, Diego Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Tel, L. M.. Universidad de Salamanca; EspañaFil: Pérez Romero, E.. Universidad de Salamanca; EspañaJohn Wiley & Sons Inc2011-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/56959Valdemoro, C.; Alcoba, Diego Ricardo; Tel, L. M.; Pérez Romero, E.; Some theoretical questions about the G-particle-hole hypervirial equation; John Wiley & Sons Inc; International Journal of Quantum Chemistry; 111; 2; 2-2011; 245-2550020-7608CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/qua.22678info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.22678info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:09:03Zoai:ri.conicet.gov.ar:11336/56959instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:09:04.056CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Some theoretical questions about the G-particle-hole hypervirial equation
title Some theoretical questions about the G-particle-hole hypervirial equation
spellingShingle Some theoretical questions about the G-particle-hole hypervirial equation
Valdemoro, C.
Contracted SchrÖDinger Equation
Correlation Matrix
Electronic Correlation Effects
G-Particle-Hole Matrix
Reduced Density Matrix
title_short Some theoretical questions about the G-particle-hole hypervirial equation
title_full Some theoretical questions about the G-particle-hole hypervirial equation
title_fullStr Some theoretical questions about the G-particle-hole hypervirial equation
title_full_unstemmed Some theoretical questions about the G-particle-hole hypervirial equation
title_sort Some theoretical questions about the G-particle-hole hypervirial equation
dc.creator.none.fl_str_mv Valdemoro, C.
Alcoba, Diego Ricardo
Tel, L. M.
Pérez Romero, E.
author Valdemoro, C.
author_facet Valdemoro, C.
Alcoba, Diego Ricardo
Tel, L. M.
Pérez Romero, E.
author_role author
author2 Alcoba, Diego Ricardo
Tel, L. M.
Pérez Romero, E.
author2_role author
author
author
dc.subject.none.fl_str_mv Contracted SchrÖDinger Equation
Correlation Matrix
Electronic Correlation Effects
G-Particle-Hole Matrix
Reduced Density Matrix
topic Contracted SchrÖDinger Equation
Correlation Matrix
Electronic Correlation Effects
G-Particle-Hole Matrix
Reduced Density Matrix
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv By applying a matrix contracting mapping, involving the G-particle-hole operator, to the matrix representation of the N-electron density hypervirial equation, one obtains the G-particle-hole hypervirial (GHV) equation (Alcoba, et al., Int J Quant Chem 2009, 109, 3178). This equation may be solved by exploiting the stationary property of the hypervirials (Hirschfelder, J Chem Phys 1960, 33, 1462; Fernández and Castro, Hypervirial Theorems., Lecture Notes in Chemistry Series 43, 1987) and by following the general lines of Mazziotti's approach for solving the anti-Hermitian contracted Schrödinger equation (Mazziotti, Phys Rev Lett 2006, 97, 143002), which can be identified with the second-order density hypervirial equation. The accuracy of the results obtained with this method when studying the ground-state of a set of atoms and molecules was excellent when compared with the equivalent full configuration interaction (FCI) quantities. Here, we analyze two open questions: under what conditions the solution of the GHV equation corresponds to a Hamiltonian eigenstate, and the possibility of extending the field of application of this methodology to the study of excited and multiconfigurational states. A brief account of the main difficulties that arise when studying this type of states is described. © 2010 Wiley Periodicals, Inc.
Fil: Valdemoro, C.. Consejo Superior de Investigaciones Científicas; España
Fil: Alcoba, Diego Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Tel, L. M.. Universidad de Salamanca; España
Fil: Pérez Romero, E.. Universidad de Salamanca; España
description By applying a matrix contracting mapping, involving the G-particle-hole operator, to the matrix representation of the N-electron density hypervirial equation, one obtains the G-particle-hole hypervirial (GHV) equation (Alcoba, et al., Int J Quant Chem 2009, 109, 3178). This equation may be solved by exploiting the stationary property of the hypervirials (Hirschfelder, J Chem Phys 1960, 33, 1462; Fernández and Castro, Hypervirial Theorems., Lecture Notes in Chemistry Series 43, 1987) and by following the general lines of Mazziotti's approach for solving the anti-Hermitian contracted Schrödinger equation (Mazziotti, Phys Rev Lett 2006, 97, 143002), which can be identified with the second-order density hypervirial equation. The accuracy of the results obtained with this method when studying the ground-state of a set of atoms and molecules was excellent when compared with the equivalent full configuration interaction (FCI) quantities. Here, we analyze two open questions: under what conditions the solution of the GHV equation corresponds to a Hamiltonian eigenstate, and the possibility of extending the field of application of this methodology to the study of excited and multiconfigurational states. A brief account of the main difficulties that arise when studying this type of states is described. © 2010 Wiley Periodicals, Inc.
publishDate 2011
dc.date.none.fl_str_mv 2011-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/56959
Valdemoro, C.; Alcoba, Diego Ricardo; Tel, L. M.; Pérez Romero, E.; Some theoretical questions about the G-particle-hole hypervirial equation; John Wiley & Sons Inc; International Journal of Quantum Chemistry; 111; 2; 2-2011; 245-255
0020-7608
CONICET Digital
CONICET
url http://hdl.handle.net/11336/56959
identifier_str_mv Valdemoro, C.; Alcoba, Diego Ricardo; Tel, L. M.; Pérez Romero, E.; Some theoretical questions about the G-particle-hole hypervirial equation; John Wiley & Sons Inc; International Journal of Quantum Chemistry; 111; 2; 2-2011; 245-255
0020-7608
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1002/qua.22678
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.22678
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv John Wiley & Sons Inc
publisher.none.fl_str_mv John Wiley & Sons Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613964913180672
score 13.070432