Optimizing the use of biologgers for movement ecology research
- Autores
- Williams, Hannah J.; Taylor, Lucy; Benhamou, Simon; Bijleveld, Allert; Clay, Thomas; de Grissac, Sophie; Demsar, Urska; English, Holly M.; Franconi, Novella; Gómez Laich, Agustina Marta; Griffiths, Rachael; Kay, William P.; Morales, Juan Manuel; Potts, Jonathan; Rogerson, Katharine F.; Rutz, Christian; Spelt, Anouk; Trevail, Alice; Wilson, Rory P.; Börger, Luca
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The paradigm-changing opportunities of biologging sensors for ecological research, especially movement ecology, are vast, but the crucial questions of how best to match the most appropriate sensors and sensor combinations to specific biological questions and how to analyse complex biologging data, are mostly ignored. Here, we fill this gap by reviewing how to optimize the use of biologging techniques to answer questions in movement ecology and synthesize this into an Integrated Biologging Framework (IBF). We highlight that multisensor approaches are a new frontier in biologging, while identifying current limitations and avenues for future development in sensor technology. We focus on the importance of efficient data exploration, and more advanced multidimensional visualization methods, combined with appropriate archiving and sharing approaches, to tackle the big data issues presented by biologging. We also discuss the challenges and opportunities in matching the peculiarities of specific sensor data to the statistical models used, highlighting at the same time the large advances which will be required in the latter to properly analyse biologging data. Taking advantage of the biologging revolution will require a large improvement in the theoretical and mathematical foundations of movement ecology, to include the rich set of high-frequency multivariate data, which greatly expand the fundamentally limited and coarse data that could be collected using location-only technology such as GPS. Equally important will be the establishment of multidisciplinary collaborations to catalyse the opportunities offered by current and future biologging technology. If this is achieved, clear potential exists for developing a vastly improved mechanistic understanding of animal movements and their roles in ecological processes and for building realistic predictive models.
Fil: Williams, Hannah J.. Swansea University; Reino Unido
Fil: Taylor, Lucy. University of Oxford; Reino Unido. Save The Elephants; Kenia
Fil: Benhamou, Simon. Centre National de la Recherche Scientifique; Francia
Fil: Bijleveld, Allert. Utrecht University; Países Bajos
Fil: Clay, Thomas. University of Liverpool; Reino Unido
Fil: de Grissac, Sophie. Swansea University; Reino Unido
Fil: Demsar, Urska. University of St. Andrews; Reino Unido
Fil: English, Holly M.. Swansea University; Reino Unido
Fil: Franconi, Novella. Swansea University; Reino Unido
Fil: Gómez Laich, Agustina Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; Argentina
Fil: Griffiths, Rachael. Swansea University; Reino Unido
Fil: Kay, William P.. Swansea University; Reino Unido
Fil: Morales, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Potts, Jonathan. University of Sheffield; Reino Unido
Fil: Rogerson, Katharine F.. University of East Anglia; Reino Unido
Fil: Rutz, Christian. University of St. Andrews; Reino Unido
Fil: Spelt, Anouk. University of Bristol; Reino Unido
Fil: Trevail, Alice. University of Liverpool; Reino Unido
Fil: Wilson, Rory P.. Swansea University; Reino Unido
Fil: Börger, Luca. Swansea University; Reino Unido - Materia
-
ACCELEROMETER
BIG DATA
DATA VISUALIZATION
GPS
INTEGRATED BIOLOGGING FRAMEWORK
MOVEMENT ECOLOGY
MULTIDISCIPLINARY COLLABORATION
MULTISENSOR APPROACH - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/106769
Ver los metadatos del registro completo
id |
CONICETDig_4820191c0371df713f6b703ef31aae3f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/106769 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Optimizing the use of biologgers for movement ecology researchWilliams, Hannah J.Taylor, LucyBenhamou, SimonBijleveld, AllertClay, Thomasde Grissac, SophieDemsar, UrskaEnglish, Holly M.Franconi, NovellaGómez Laich, Agustina MartaGriffiths, RachaelKay, William P.Morales, Juan ManuelPotts, JonathanRogerson, Katharine F.Rutz, ChristianSpelt, AnoukTrevail, AliceWilson, Rory P.Börger, LucaACCELEROMETERBIG DATADATA VISUALIZATIONGPSINTEGRATED BIOLOGGING FRAMEWORKMOVEMENT ECOLOGYMULTIDISCIPLINARY COLLABORATIONMULTISENSOR APPROACHhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The paradigm-changing opportunities of biologging sensors for ecological research, especially movement ecology, are vast, but the crucial questions of how best to match the most appropriate sensors and sensor combinations to specific biological questions and how to analyse complex biologging data, are mostly ignored. Here, we fill this gap by reviewing how to optimize the use of biologging techniques to answer questions in movement ecology and synthesize this into an Integrated Biologging Framework (IBF). We highlight that multisensor approaches are a new frontier in biologging, while identifying current limitations and avenues for future development in sensor technology. We focus on the importance of efficient data exploration, and more advanced multidimensional visualization methods, combined with appropriate archiving and sharing approaches, to tackle the big data issues presented by biologging. We also discuss the challenges and opportunities in matching the peculiarities of specific sensor data to the statistical models used, highlighting at the same time the large advances which will be required in the latter to properly analyse biologging data. Taking advantage of the biologging revolution will require a large improvement in the theoretical and mathematical foundations of movement ecology, to include the rich set of high-frequency multivariate data, which greatly expand the fundamentally limited and coarse data that could be collected using location-only technology such as GPS. Equally important will be the establishment of multidisciplinary collaborations to catalyse the opportunities offered by current and future biologging technology. If this is achieved, clear potential exists for developing a vastly improved mechanistic understanding of animal movements and their roles in ecological processes and for building realistic predictive models.Fil: Williams, Hannah J.. Swansea University; Reino UnidoFil: Taylor, Lucy. University of Oxford; Reino Unido. Save The Elephants; KeniaFil: Benhamou, Simon. Centre National de la Recherche Scientifique; FranciaFil: Bijleveld, Allert. Utrecht University; Países BajosFil: Clay, Thomas. University of Liverpool; Reino UnidoFil: de Grissac, Sophie. Swansea University; Reino UnidoFil: Demsar, Urska. University of St. Andrews; Reino UnidoFil: English, Holly M.. Swansea University; Reino UnidoFil: Franconi, Novella. Swansea University; Reino UnidoFil: Gómez Laich, Agustina Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; ArgentinaFil: Griffiths, Rachael. Swansea University; Reino UnidoFil: Kay, William P.. Swansea University; Reino UnidoFil: Morales, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Potts, Jonathan. University of Sheffield; Reino UnidoFil: Rogerson, Katharine F.. University of East Anglia; Reino UnidoFil: Rutz, Christian. University of St. Andrews; Reino UnidoFil: Spelt, Anouk. University of Bristol; Reino UnidoFil: Trevail, Alice. University of Liverpool; Reino UnidoFil: Wilson, Rory P.. Swansea University; Reino UnidoFil: Börger, Luca. Swansea University; Reino UnidoWiley Blackwell Publishing, Inc2020-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/106769Williams, Hannah J.; Taylor, Lucy; Benhamou, Simon; Bijleveld, Allert; Clay, Thomas; et al.; Optimizing the use of biologgers for movement ecology research; Wiley Blackwell Publishing, Inc; Journal Of Animal Ecology; 89; 1; 1-2020; 1-210021-87901365-2656CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1111/1365-2656.13094info:eu-repo/semantics/altIdentifier/url/https://besjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2656.13094info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:55Zoai:ri.conicet.gov.ar:11336/106769instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:55.787CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Optimizing the use of biologgers for movement ecology research |
title |
Optimizing the use of biologgers for movement ecology research |
spellingShingle |
Optimizing the use of biologgers for movement ecology research Williams, Hannah J. ACCELEROMETER BIG DATA DATA VISUALIZATION GPS INTEGRATED BIOLOGGING FRAMEWORK MOVEMENT ECOLOGY MULTIDISCIPLINARY COLLABORATION MULTISENSOR APPROACH |
title_short |
Optimizing the use of biologgers for movement ecology research |
title_full |
Optimizing the use of biologgers for movement ecology research |
title_fullStr |
Optimizing the use of biologgers for movement ecology research |
title_full_unstemmed |
Optimizing the use of biologgers for movement ecology research |
title_sort |
Optimizing the use of biologgers for movement ecology research |
dc.creator.none.fl_str_mv |
Williams, Hannah J. Taylor, Lucy Benhamou, Simon Bijleveld, Allert Clay, Thomas de Grissac, Sophie Demsar, Urska English, Holly M. Franconi, Novella Gómez Laich, Agustina Marta Griffiths, Rachael Kay, William P. Morales, Juan Manuel Potts, Jonathan Rogerson, Katharine F. Rutz, Christian Spelt, Anouk Trevail, Alice Wilson, Rory P. Börger, Luca |
author |
Williams, Hannah J. |
author_facet |
Williams, Hannah J. Taylor, Lucy Benhamou, Simon Bijleveld, Allert Clay, Thomas de Grissac, Sophie Demsar, Urska English, Holly M. Franconi, Novella Gómez Laich, Agustina Marta Griffiths, Rachael Kay, William P. Morales, Juan Manuel Potts, Jonathan Rogerson, Katharine F. Rutz, Christian Spelt, Anouk Trevail, Alice Wilson, Rory P. Börger, Luca |
author_role |
author |
author2 |
Taylor, Lucy Benhamou, Simon Bijleveld, Allert Clay, Thomas de Grissac, Sophie Demsar, Urska English, Holly M. Franconi, Novella Gómez Laich, Agustina Marta Griffiths, Rachael Kay, William P. Morales, Juan Manuel Potts, Jonathan Rogerson, Katharine F. Rutz, Christian Spelt, Anouk Trevail, Alice Wilson, Rory P. Börger, Luca |
author2_role |
author author author author author author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
ACCELEROMETER BIG DATA DATA VISUALIZATION GPS INTEGRATED BIOLOGGING FRAMEWORK MOVEMENT ECOLOGY MULTIDISCIPLINARY COLLABORATION MULTISENSOR APPROACH |
topic |
ACCELEROMETER BIG DATA DATA VISUALIZATION GPS INTEGRATED BIOLOGGING FRAMEWORK MOVEMENT ECOLOGY MULTIDISCIPLINARY COLLABORATION MULTISENSOR APPROACH |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The paradigm-changing opportunities of biologging sensors for ecological research, especially movement ecology, are vast, but the crucial questions of how best to match the most appropriate sensors and sensor combinations to specific biological questions and how to analyse complex biologging data, are mostly ignored. Here, we fill this gap by reviewing how to optimize the use of biologging techniques to answer questions in movement ecology and synthesize this into an Integrated Biologging Framework (IBF). We highlight that multisensor approaches are a new frontier in biologging, while identifying current limitations and avenues for future development in sensor technology. We focus on the importance of efficient data exploration, and more advanced multidimensional visualization methods, combined with appropriate archiving and sharing approaches, to tackle the big data issues presented by biologging. We also discuss the challenges and opportunities in matching the peculiarities of specific sensor data to the statistical models used, highlighting at the same time the large advances which will be required in the latter to properly analyse biologging data. Taking advantage of the biologging revolution will require a large improvement in the theoretical and mathematical foundations of movement ecology, to include the rich set of high-frequency multivariate data, which greatly expand the fundamentally limited and coarse data that could be collected using location-only technology such as GPS. Equally important will be the establishment of multidisciplinary collaborations to catalyse the opportunities offered by current and future biologging technology. If this is achieved, clear potential exists for developing a vastly improved mechanistic understanding of animal movements and their roles in ecological processes and for building realistic predictive models. Fil: Williams, Hannah J.. Swansea University; Reino Unido Fil: Taylor, Lucy. University of Oxford; Reino Unido. Save The Elephants; Kenia Fil: Benhamou, Simon. Centre National de la Recherche Scientifique; Francia Fil: Bijleveld, Allert. Utrecht University; Países Bajos Fil: Clay, Thomas. University of Liverpool; Reino Unido Fil: de Grissac, Sophie. Swansea University; Reino Unido Fil: Demsar, Urska. University of St. Andrews; Reino Unido Fil: English, Holly M.. Swansea University; Reino Unido Fil: Franconi, Novella. Swansea University; Reino Unido Fil: Gómez Laich, Agustina Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; Argentina Fil: Griffiths, Rachael. Swansea University; Reino Unido Fil: Kay, William P.. Swansea University; Reino Unido Fil: Morales, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina Fil: Potts, Jonathan. University of Sheffield; Reino Unido Fil: Rogerson, Katharine F.. University of East Anglia; Reino Unido Fil: Rutz, Christian. University of St. Andrews; Reino Unido Fil: Spelt, Anouk. University of Bristol; Reino Unido Fil: Trevail, Alice. University of Liverpool; Reino Unido Fil: Wilson, Rory P.. Swansea University; Reino Unido Fil: Börger, Luca. Swansea University; Reino Unido |
description |
The paradigm-changing opportunities of biologging sensors for ecological research, especially movement ecology, are vast, but the crucial questions of how best to match the most appropriate sensors and sensor combinations to specific biological questions and how to analyse complex biologging data, are mostly ignored. Here, we fill this gap by reviewing how to optimize the use of biologging techniques to answer questions in movement ecology and synthesize this into an Integrated Biologging Framework (IBF). We highlight that multisensor approaches are a new frontier in biologging, while identifying current limitations and avenues for future development in sensor technology. We focus on the importance of efficient data exploration, and more advanced multidimensional visualization methods, combined with appropriate archiving and sharing approaches, to tackle the big data issues presented by biologging. We also discuss the challenges and opportunities in matching the peculiarities of specific sensor data to the statistical models used, highlighting at the same time the large advances which will be required in the latter to properly analyse biologging data. Taking advantage of the biologging revolution will require a large improvement in the theoretical and mathematical foundations of movement ecology, to include the rich set of high-frequency multivariate data, which greatly expand the fundamentally limited and coarse data that could be collected using location-only technology such as GPS. Equally important will be the establishment of multidisciplinary collaborations to catalyse the opportunities offered by current and future biologging technology. If this is achieved, clear potential exists for developing a vastly improved mechanistic understanding of animal movements and their roles in ecological processes and for building realistic predictive models. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/106769 Williams, Hannah J.; Taylor, Lucy; Benhamou, Simon; Bijleveld, Allert; Clay, Thomas; et al.; Optimizing the use of biologgers for movement ecology research; Wiley Blackwell Publishing, Inc; Journal Of Animal Ecology; 89; 1; 1-2020; 1-21 0021-8790 1365-2656 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/106769 |
identifier_str_mv |
Williams, Hannah J.; Taylor, Lucy; Benhamou, Simon; Bijleveld, Allert; Clay, Thomas; et al.; Optimizing the use of biologgers for movement ecology research; Wiley Blackwell Publishing, Inc; Journal Of Animal Ecology; 89; 1; 1-2020; 1-21 0021-8790 1365-2656 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1111/1365-2656.13094 info:eu-repo/semantics/altIdentifier/url/https://besjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2656.13094 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613230854406144 |
score |
13.070432 |