An investigation of ensemble-based assimilation of satellite altimetry and tide gauge data in storm surge prediction
- Autores
- Etala, Paula; Saraceno, Martin; Echevarria, Pablo
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Cyclogenesis and long-fetched winds along the southeastern coast of South America may lead to floods in populated areas, as the Buenos Aires Province, with important economic and social impacts. A numerical model (SMARA) has already been implemented in the region to forecast storm surges. The propagation time of the surge in such extensive and shallow area allows the detection of anomalies based on observations from several hours up to the order of a day prior to the event. Here, we investigate the impact and potential benefit of storm surge level data assimilation into the SMARA model, with the objective of improving the forecast. In the experiments, the surface wind stress from an ensemble prediction sys- tem drives a storm surge model ensemble, based on the operational 2-D depth-averaged SMARA model. A 4-D Local Ensemble Transform Kalman Filter (4D-LETKF) initializes the ensemble in a 6-h cycle, assimilating the very few tide gauge observations available along the north- ern coast and satellite altimeter data. The sparse coverage of the altimeters is a challenge to data assimilation; how- ever, the 4D-LETKF evolving covariance of the ensemble perturbations provides realistic cross-track analysis incre- ments. Improvements on the forecast ensemble mean show the potential of an effective use of the sparse satellite altime- ter and tidal gauges observations in the data assimilation prototype. Furthermore, the effects of the localization scale and of the observational errors of coastal altimetry and tidal gauges in the data assimilation approach are assessed.
Fil: Etala, Paula. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografia Naval; Argentina
Fil: Saraceno, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera; Argentina
Fil: Echevarria, Pablo. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina - Materia
-
Data Assimilation
Strom Surge
Satellite Altimetry - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/4672
Ver los metadatos del registro completo
id |
CONICETDig_47d6724d7a3536e1683acb2d6c1eecbe |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/4672 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An investigation of ensemble-based assimilation of satellite altimetry and tide gauge data in storm surge predictionEtala, PaulaSaraceno, MartinEchevarria, PabloData AssimilationStrom SurgeSatellite Altimetryhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Cyclogenesis and long-fetched winds along the southeastern coast of South America may lead to floods in populated areas, as the Buenos Aires Province, with important economic and social impacts. A numerical model (SMARA) has already been implemented in the region to forecast storm surges. The propagation time of the surge in such extensive and shallow area allows the detection of anomalies based on observations from several hours up to the order of a day prior to the event. Here, we investigate the impact and potential benefit of storm surge level data assimilation into the SMARA model, with the objective of improving the forecast. In the experiments, the surface wind stress from an ensemble prediction sys- tem drives a storm surge model ensemble, based on the operational 2-D depth-averaged SMARA model. A 4-D Local Ensemble Transform Kalman Filter (4D-LETKF) initializes the ensemble in a 6-h cycle, assimilating the very few tide gauge observations available along the north- ern coast and satellite altimeter data. The sparse coverage of the altimeters is a challenge to data assimilation; how- ever, the 4D-LETKF evolving covariance of the ensemble perturbations provides realistic cross-track analysis incre- ments. Improvements on the forecast ensemble mean show the potential of an effective use of the sparse satellite altime- ter and tidal gauges observations in the data assimilation prototype. Furthermore, the effects of the localization scale and of the observational errors of coastal altimetry and tidal gauges in the data assimilation approach are assessed.Fil: Etala, Paula. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografia Naval; ArgentinaFil: Saraceno, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera; ArgentinaFil: Echevarria, Pablo. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; ArgentinaSpringer2015-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/4672Etala, Paula; Saraceno, Martin; Echevarria, Pablo; An investigation of ensemble-based assimilation of satellite altimetry and tide gauge data in storm surge prediction; Springer; Ocean Dynamics; 65; 3; 1-2015; 435-4471616-7341enginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s10236-015-0808-zinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10236-015-0808-zinfo:eu-repo/semantics/altIdentifier/issn/1616-7341info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:03:14Zoai:ri.conicet.gov.ar:11336/4672instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:03:14.966CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An investigation of ensemble-based assimilation of satellite altimetry and tide gauge data in storm surge prediction |
title |
An investigation of ensemble-based assimilation of satellite altimetry and tide gauge data in storm surge prediction |
spellingShingle |
An investigation of ensemble-based assimilation of satellite altimetry and tide gauge data in storm surge prediction Etala, Paula Data Assimilation Strom Surge Satellite Altimetry |
title_short |
An investigation of ensemble-based assimilation of satellite altimetry and tide gauge data in storm surge prediction |
title_full |
An investigation of ensemble-based assimilation of satellite altimetry and tide gauge data in storm surge prediction |
title_fullStr |
An investigation of ensemble-based assimilation of satellite altimetry and tide gauge data in storm surge prediction |
title_full_unstemmed |
An investigation of ensemble-based assimilation of satellite altimetry and tide gauge data in storm surge prediction |
title_sort |
An investigation of ensemble-based assimilation of satellite altimetry and tide gauge data in storm surge prediction |
dc.creator.none.fl_str_mv |
Etala, Paula Saraceno, Martin Echevarria, Pablo |
author |
Etala, Paula |
author_facet |
Etala, Paula Saraceno, Martin Echevarria, Pablo |
author_role |
author |
author2 |
Saraceno, Martin Echevarria, Pablo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Data Assimilation Strom Surge Satellite Altimetry |
topic |
Data Assimilation Strom Surge Satellite Altimetry |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Cyclogenesis and long-fetched winds along the southeastern coast of South America may lead to floods in populated areas, as the Buenos Aires Province, with important economic and social impacts. A numerical model (SMARA) has already been implemented in the region to forecast storm surges. The propagation time of the surge in such extensive and shallow area allows the detection of anomalies based on observations from several hours up to the order of a day prior to the event. Here, we investigate the impact and potential benefit of storm surge level data assimilation into the SMARA model, with the objective of improving the forecast. In the experiments, the surface wind stress from an ensemble prediction sys- tem drives a storm surge model ensemble, based on the operational 2-D depth-averaged SMARA model. A 4-D Local Ensemble Transform Kalman Filter (4D-LETKF) initializes the ensemble in a 6-h cycle, assimilating the very few tide gauge observations available along the north- ern coast and satellite altimeter data. The sparse coverage of the altimeters is a challenge to data assimilation; how- ever, the 4D-LETKF evolving covariance of the ensemble perturbations provides realistic cross-track analysis incre- ments. Improvements on the forecast ensemble mean show the potential of an effective use of the sparse satellite altime- ter and tidal gauges observations in the data assimilation prototype. Furthermore, the effects of the localization scale and of the observational errors of coastal altimetry and tidal gauges in the data assimilation approach are assessed. Fil: Etala, Paula. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografia Naval; Argentina Fil: Saraceno, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera; Argentina Fil: Echevarria, Pablo. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina |
description |
Cyclogenesis and long-fetched winds along the southeastern coast of South America may lead to floods in populated areas, as the Buenos Aires Province, with important economic and social impacts. A numerical model (SMARA) has already been implemented in the region to forecast storm surges. The propagation time of the surge in such extensive and shallow area allows the detection of anomalies based on observations from several hours up to the order of a day prior to the event. Here, we investigate the impact and potential benefit of storm surge level data assimilation into the SMARA model, with the objective of improving the forecast. In the experiments, the surface wind stress from an ensemble prediction sys- tem drives a storm surge model ensemble, based on the operational 2-D depth-averaged SMARA model. A 4-D Local Ensemble Transform Kalman Filter (4D-LETKF) initializes the ensemble in a 6-h cycle, assimilating the very few tide gauge observations available along the north- ern coast and satellite altimeter data. The sparse coverage of the altimeters is a challenge to data assimilation; how- ever, the 4D-LETKF evolving covariance of the ensemble perturbations provides realistic cross-track analysis incre- ments. Improvements on the forecast ensemble mean show the potential of an effective use of the sparse satellite altime- ter and tidal gauges observations in the data assimilation prototype. Furthermore, the effects of the localization scale and of the observational errors of coastal altimetry and tidal gauges in the data assimilation approach are assessed. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/4672 Etala, Paula; Saraceno, Martin; Echevarria, Pablo; An investigation of ensemble-based assimilation of satellite altimetry and tide gauge data in storm surge prediction; Springer; Ocean Dynamics; 65; 3; 1-2015; 435-447 1616-7341 |
url |
http://hdl.handle.net/11336/4672 |
identifier_str_mv |
Etala, Paula; Saraceno, Martin; Echevarria, Pablo; An investigation of ensemble-based assimilation of satellite altimetry and tide gauge data in storm surge prediction; Springer; Ocean Dynamics; 65; 3; 1-2015; 435-447 1616-7341 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s10236-015-0808-z info:eu-repo/semantics/altIdentifier/doi/10.1007/s10236-015-0808-z info:eu-repo/semantics/altIdentifier/issn/1616-7341 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980069597773824 |
score |
12.993085 |