Mathematical modelling of tuberculosis epidemics
- Autores
- Aparicio, Juan Pablo; Castillo Chavez, Carlos
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The strengths and limitations of using homogeneous mixing and heterogeneous mixing epidemic models are explored in the context of the transmission dynamics of tuberculosis. The focus is on three types of models: a standard incidence homogeneous mixing model, a non-homogeneous mixing model that incorporates 'household' contacts, and an age-structured model. The models are parameterized using demographic and epidemiological data and the patterns generated from these models are compared. Furthermore, the effects of population growth, stochasticity, clustering of contacts, and age structure on disease dynamics are explored. This framework is used to asses the possible causes for the observed historical decline of tuberculosis notifications.
Fil: Aparicio, Juan Pablo. Universidad Metropolitana San Juan; Puerto Rico. Universidad Nacional de Salta; Argentina
Fil: Castillo Chavez, Carlos. Arizona State University. School Of Human Evolution And Social Change; Estados Unidos. Mathematical, Computational and Modeling Sciences Center; Estados Unidos. Santa Fe Institute; Estados Unidos - Materia
-
Demography
Non-Autonomous Systems
Stochastic Models
Tuberculosis - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/71276
Ver los metadatos del registro completo
id |
CONICETDig_47c7fcbd014550c3e9884ac5c8961b12 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/71276 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Mathematical modelling of tuberculosis epidemicsAparicio, Juan PabloCastillo Chavez, CarlosDemographyNon-Autonomous SystemsStochastic ModelsTuberculosishttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The strengths and limitations of using homogeneous mixing and heterogeneous mixing epidemic models are explored in the context of the transmission dynamics of tuberculosis. The focus is on three types of models: a standard incidence homogeneous mixing model, a non-homogeneous mixing model that incorporates 'household' contacts, and an age-structured model. The models are parameterized using demographic and epidemiological data and the patterns generated from these models are compared. Furthermore, the effects of population growth, stochasticity, clustering of contacts, and age structure on disease dynamics are explored. This framework is used to asses the possible causes for the observed historical decline of tuberculosis notifications.Fil: Aparicio, Juan Pablo. Universidad Metropolitana San Juan; Puerto Rico. Universidad Nacional de Salta; ArgentinaFil: Castillo Chavez, Carlos. Arizona State University. School Of Human Evolution And Social Change; Estados Unidos. Mathematical, Computational and Modeling Sciences Center; Estados Unidos. Santa Fe Institute; Estados UnidosAmerican Institute of Mathematical Sciences2009-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/71276Aparicio, Juan Pablo; Castillo Chavez, Carlos; Mathematical modelling of tuberculosis epidemics; American Institute of Mathematical Sciences; Mathematical Biosciences And Engineering; 6; 2; 4-2009; 209-2371547-1063CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3934/mbe.2009.6.209info:eu-repo/semantics/altIdentifier/url/www.aimsciences.org/article/doi/10.3934/mbe.2009.6.209info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:52:06Zoai:ri.conicet.gov.ar:11336/71276instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:52:06.288CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Mathematical modelling of tuberculosis epidemics |
title |
Mathematical modelling of tuberculosis epidemics |
spellingShingle |
Mathematical modelling of tuberculosis epidemics Aparicio, Juan Pablo Demography Non-Autonomous Systems Stochastic Models Tuberculosis |
title_short |
Mathematical modelling of tuberculosis epidemics |
title_full |
Mathematical modelling of tuberculosis epidemics |
title_fullStr |
Mathematical modelling of tuberculosis epidemics |
title_full_unstemmed |
Mathematical modelling of tuberculosis epidemics |
title_sort |
Mathematical modelling of tuberculosis epidemics |
dc.creator.none.fl_str_mv |
Aparicio, Juan Pablo Castillo Chavez, Carlos |
author |
Aparicio, Juan Pablo |
author_facet |
Aparicio, Juan Pablo Castillo Chavez, Carlos |
author_role |
author |
author2 |
Castillo Chavez, Carlos |
author2_role |
author |
dc.subject.none.fl_str_mv |
Demography Non-Autonomous Systems Stochastic Models Tuberculosis |
topic |
Demography Non-Autonomous Systems Stochastic Models Tuberculosis |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The strengths and limitations of using homogeneous mixing and heterogeneous mixing epidemic models are explored in the context of the transmission dynamics of tuberculosis. The focus is on three types of models: a standard incidence homogeneous mixing model, a non-homogeneous mixing model that incorporates 'household' contacts, and an age-structured model. The models are parameterized using demographic and epidemiological data and the patterns generated from these models are compared. Furthermore, the effects of population growth, stochasticity, clustering of contacts, and age structure on disease dynamics are explored. This framework is used to asses the possible causes for the observed historical decline of tuberculosis notifications. Fil: Aparicio, Juan Pablo. Universidad Metropolitana San Juan; Puerto Rico. Universidad Nacional de Salta; Argentina Fil: Castillo Chavez, Carlos. Arizona State University. School Of Human Evolution And Social Change; Estados Unidos. Mathematical, Computational and Modeling Sciences Center; Estados Unidos. Santa Fe Institute; Estados Unidos |
description |
The strengths and limitations of using homogeneous mixing and heterogeneous mixing epidemic models are explored in the context of the transmission dynamics of tuberculosis. The focus is on three types of models: a standard incidence homogeneous mixing model, a non-homogeneous mixing model that incorporates 'household' contacts, and an age-structured model. The models are parameterized using demographic and epidemiological data and the patterns generated from these models are compared. Furthermore, the effects of population growth, stochasticity, clustering of contacts, and age structure on disease dynamics are explored. This framework is used to asses the possible causes for the observed historical decline of tuberculosis notifications. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/71276 Aparicio, Juan Pablo; Castillo Chavez, Carlos; Mathematical modelling of tuberculosis epidemics; American Institute of Mathematical Sciences; Mathematical Biosciences And Engineering; 6; 2; 4-2009; 209-237 1547-1063 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/71276 |
identifier_str_mv |
Aparicio, Juan Pablo; Castillo Chavez, Carlos; Mathematical modelling of tuberculosis epidemics; American Institute of Mathematical Sciences; Mathematical Biosciences And Engineering; 6; 2; 4-2009; 209-237 1547-1063 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3934/mbe.2009.6.209 info:eu-repo/semantics/altIdentifier/url/www.aimsciences.org/article/doi/10.3934/mbe.2009.6.209 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Mathematical Sciences |
publisher.none.fl_str_mv |
American Institute of Mathematical Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613599319818240 |
score |
13.070432 |