Fatty acids in microalgae and cyanobacteria in a changing world: Contrasting temperate and cold environments

Autores
Hernando, Marcelo Pablo; Schloss, Irene Ruth; de la Rosa, Florencia Grisel; de Troch, Marleen
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Under the present changing climate conditions and the observed temperature increase, it is of high importance to understand its effects on aquatic microbial life, and organisms’ adaptations at the biochemical level. To adjust to temperature or salinity stress and avoid cell damage, organisms alter their degree of fatty acids (FAs) saturation. Thus, temperature is expected to have strong effects on both the quantity and quality of FAs in aquatic microorganisms. Here we review some recent findings about FAs sensitivity to climate change in contrasting environments. Overall, heat waves may induce changes in the relative abundance of polyunsaturated FAs (PUFA). However, the impact of the exposure to warming waters is different in temperate and polar environments. In cold marine waters, high concentration of omega-3 (ω3) FAs such as eicosapentaenoic acid (EPA) is promoted due to the activation of the desaturase enzyme. In this way, cells have enough energy to produce or activate antioxidant protection mechanisms and avoid oxidative stress due to heat waves. Contrastingly, under high irradiance and heat wave conditions in temperate environments, photosystems’ protection is achieved by decreasing EPA concentration due to desaturase sensitivity. Essential FAs are transferred in aquatic food webs. Therefore, any alteration in the production of essential FAs by phytoplankton (the main source of ω3) due to climate warming can be transferred to higher trophic levels, with cascading effects for the entire aquatic ecosystem.
Fil: Hernando, Marcelo Pablo. Comisión Nacional de Energía Atómica. Gerencia de Area de Aplicaciones de la Tecnología Nuclear. Gerencia de Radiobiología (Centro Atómico Constituyentes); Argentina. Red de Investigación de Estresores Marinos-costeros en América Latina y el Caribe; Argentina
Fil: Schloss, Irene Ruth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentina. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; Argentina. Universidad Nacional de Tierra del Fuego; Argentina
Fil: de la Rosa, Florencia Grisel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Morón. Secretaria de Ciencia y Tecnología. Instituto de Ciencias Básicas y Experimentales; Argentina
Fil: de Troch, Marleen. University Of Ghent. Faculty Of Sciences; Bélgica
Materia
ANTARCTIC
CYANOBACTERIA
ESSENTIAL FAS
INCREASED TEMPERATURE
MICROALGAE
TEMPERATE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/166544

id CONICETDig_479398a8b91a9b7949c07b173491f3ba
oai_identifier_str oai:ri.conicet.gov.ar:11336/166544
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Fatty acids in microalgae and cyanobacteria in a changing world: Contrasting temperate and cold environmentsHernando, Marcelo PabloSchloss, Irene Ruthde la Rosa, Florencia Griselde Troch, MarleenANTARCTICCYANOBACTERIAESSENTIAL FASINCREASED TEMPERATUREMICROALGAETEMPERATEhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Under the present changing climate conditions and the observed temperature increase, it is of high importance to understand its effects on aquatic microbial life, and organisms’ adaptations at the biochemical level. To adjust to temperature or salinity stress and avoid cell damage, organisms alter their degree of fatty acids (FAs) saturation. Thus, temperature is expected to have strong effects on both the quantity and quality of FAs in aquatic microorganisms. Here we review some recent findings about FAs sensitivity to climate change in contrasting environments. Overall, heat waves may induce changes in the relative abundance of polyunsaturated FAs (PUFA). However, the impact of the exposure to warming waters is different in temperate and polar environments. In cold marine waters, high concentration of omega-3 (ω3) FAs such as eicosapentaenoic acid (EPA) is promoted due to the activation of the desaturase enzyme. In this way, cells have enough energy to produce or activate antioxidant protection mechanisms and avoid oxidative stress due to heat waves. Contrastingly, under high irradiance and heat wave conditions in temperate environments, photosystems’ protection is achieved by decreasing EPA concentration due to desaturase sensitivity. Essential FAs are transferred in aquatic food webs. Therefore, any alteration in the production of essential FAs by phytoplankton (the main source of ω3) due to climate warming can be transferred to higher trophic levels, with cascading effects for the entire aquatic ecosystem.Fil: Hernando, Marcelo Pablo. Comisión Nacional de Energía Atómica. Gerencia de Area de Aplicaciones de la Tecnología Nuclear. Gerencia de Radiobiología (Centro Atómico Constituyentes); Argentina. Red de Investigación de Estresores Marinos-costeros en América Latina y el Caribe; ArgentinaFil: Schloss, Irene Ruth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentina. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; Argentina. Universidad Nacional de Tierra del Fuego; ArgentinaFil: de la Rosa, Florencia Grisel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Morón. Secretaria de Ciencia y Tecnología. Instituto de Ciencias Básicas y Experimentales; ArgentinaFil: de Troch, Marleen. University Of Ghent. Faculty Of Sciences; BélgicaTech Science Press2021-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/166544Hernando, Marcelo Pablo; Schloss, Irene Ruth; de la Rosa, Florencia Grisel; de Troch, Marleen; Fatty acids in microalgae and cyanobacteria in a changing world: Contrasting temperate and cold environments; Tech Science Press; Biocell; 46; 3; 11-2021; 607-6210327-95451667-5746CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.techscience.com/biocell/v46n3/45630info:eu-repo/semantics/altIdentifier/doi/10.32604/biocell.2022.017309info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:10:03Zoai:ri.conicet.gov.ar:11336/166544instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:10:03.455CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Fatty acids in microalgae and cyanobacteria in a changing world: Contrasting temperate and cold environments
title Fatty acids in microalgae and cyanobacteria in a changing world: Contrasting temperate and cold environments
spellingShingle Fatty acids in microalgae and cyanobacteria in a changing world: Contrasting temperate and cold environments
Hernando, Marcelo Pablo
ANTARCTIC
CYANOBACTERIA
ESSENTIAL FAS
INCREASED TEMPERATURE
MICROALGAE
TEMPERATE
title_short Fatty acids in microalgae and cyanobacteria in a changing world: Contrasting temperate and cold environments
title_full Fatty acids in microalgae and cyanobacteria in a changing world: Contrasting temperate and cold environments
title_fullStr Fatty acids in microalgae and cyanobacteria in a changing world: Contrasting temperate and cold environments
title_full_unstemmed Fatty acids in microalgae and cyanobacteria in a changing world: Contrasting temperate and cold environments
title_sort Fatty acids in microalgae and cyanobacteria in a changing world: Contrasting temperate and cold environments
dc.creator.none.fl_str_mv Hernando, Marcelo Pablo
Schloss, Irene Ruth
de la Rosa, Florencia Grisel
de Troch, Marleen
author Hernando, Marcelo Pablo
author_facet Hernando, Marcelo Pablo
Schloss, Irene Ruth
de la Rosa, Florencia Grisel
de Troch, Marleen
author_role author
author2 Schloss, Irene Ruth
de la Rosa, Florencia Grisel
de Troch, Marleen
author2_role author
author
author
dc.subject.none.fl_str_mv ANTARCTIC
CYANOBACTERIA
ESSENTIAL FAS
INCREASED TEMPERATURE
MICROALGAE
TEMPERATE
topic ANTARCTIC
CYANOBACTERIA
ESSENTIAL FAS
INCREASED TEMPERATURE
MICROALGAE
TEMPERATE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Under the present changing climate conditions and the observed temperature increase, it is of high importance to understand its effects on aquatic microbial life, and organisms’ adaptations at the biochemical level. To adjust to temperature or salinity stress and avoid cell damage, organisms alter their degree of fatty acids (FAs) saturation. Thus, temperature is expected to have strong effects on both the quantity and quality of FAs in aquatic microorganisms. Here we review some recent findings about FAs sensitivity to climate change in contrasting environments. Overall, heat waves may induce changes in the relative abundance of polyunsaturated FAs (PUFA). However, the impact of the exposure to warming waters is different in temperate and polar environments. In cold marine waters, high concentration of omega-3 (ω3) FAs such as eicosapentaenoic acid (EPA) is promoted due to the activation of the desaturase enzyme. In this way, cells have enough energy to produce or activate antioxidant protection mechanisms and avoid oxidative stress due to heat waves. Contrastingly, under high irradiance and heat wave conditions in temperate environments, photosystems’ protection is achieved by decreasing EPA concentration due to desaturase sensitivity. Essential FAs are transferred in aquatic food webs. Therefore, any alteration in the production of essential FAs by phytoplankton (the main source of ω3) due to climate warming can be transferred to higher trophic levels, with cascading effects for the entire aquatic ecosystem.
Fil: Hernando, Marcelo Pablo. Comisión Nacional de Energía Atómica. Gerencia de Area de Aplicaciones de la Tecnología Nuclear. Gerencia de Radiobiología (Centro Atómico Constituyentes); Argentina. Red de Investigación de Estresores Marinos-costeros en América Latina y el Caribe; Argentina
Fil: Schloss, Irene Ruth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentina. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; Argentina. Universidad Nacional de Tierra del Fuego; Argentina
Fil: de la Rosa, Florencia Grisel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Morón. Secretaria de Ciencia y Tecnología. Instituto de Ciencias Básicas y Experimentales; Argentina
Fil: de Troch, Marleen. University Of Ghent. Faculty Of Sciences; Bélgica
description Under the present changing climate conditions and the observed temperature increase, it is of high importance to understand its effects on aquatic microbial life, and organisms’ adaptations at the biochemical level. To adjust to temperature or salinity stress and avoid cell damage, organisms alter their degree of fatty acids (FAs) saturation. Thus, temperature is expected to have strong effects on both the quantity and quality of FAs in aquatic microorganisms. Here we review some recent findings about FAs sensitivity to climate change in contrasting environments. Overall, heat waves may induce changes in the relative abundance of polyunsaturated FAs (PUFA). However, the impact of the exposure to warming waters is different in temperate and polar environments. In cold marine waters, high concentration of omega-3 (ω3) FAs such as eicosapentaenoic acid (EPA) is promoted due to the activation of the desaturase enzyme. In this way, cells have enough energy to produce or activate antioxidant protection mechanisms and avoid oxidative stress due to heat waves. Contrastingly, under high irradiance and heat wave conditions in temperate environments, photosystems’ protection is achieved by decreasing EPA concentration due to desaturase sensitivity. Essential FAs are transferred in aquatic food webs. Therefore, any alteration in the production of essential FAs by phytoplankton (the main source of ω3) due to climate warming can be transferred to higher trophic levels, with cascading effects for the entire aquatic ecosystem.
publishDate 2021
dc.date.none.fl_str_mv 2021-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/166544
Hernando, Marcelo Pablo; Schloss, Irene Ruth; de la Rosa, Florencia Grisel; de Troch, Marleen; Fatty acids in microalgae and cyanobacteria in a changing world: Contrasting temperate and cold environments; Tech Science Press; Biocell; 46; 3; 11-2021; 607-621
0327-9545
1667-5746
CONICET Digital
CONICET
url http://hdl.handle.net/11336/166544
identifier_str_mv Hernando, Marcelo Pablo; Schloss, Irene Ruth; de la Rosa, Florencia Grisel; de Troch, Marleen; Fatty acids in microalgae and cyanobacteria in a changing world: Contrasting temperate and cold environments; Tech Science Press; Biocell; 46; 3; 11-2021; 607-621
0327-9545
1667-5746
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.techscience.com/biocell/v46n3/45630
info:eu-repo/semantics/altIdentifier/doi/10.32604/biocell.2022.017309
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Tech Science Press
publisher.none.fl_str_mv Tech Science Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613985431715840
score 13.070432