Fatty acids in microalgae and cyanobacteria in a changing world: Contrasting temperate and cold environments
- Autores
- Hernando, Marcelo Pablo; Schloss, Irene Ruth; de la Rosa, Florencia Grisel; de Troch, Marleen
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Under the present changing climate conditions and the observed temperature increase, it is of high importance to understand its effects on aquatic microbial life, and organisms’ adaptations at the biochemical level. To adjust to temperature or salinity stress and avoid cell damage, organisms alter their degree of fatty acids (FAs) saturation. Thus, temperature is expected to have strong effects on both the quantity and quality of FAs in aquatic microorganisms. Here we review some recent findings about FAs sensitivity to climate change in contrasting environments. Overall, heat waves may induce changes in the relative abundance of polyunsaturated FAs (PUFA). However, the impact of the exposure to warming waters is different in temperate and polar environments. In cold marine waters, high concentration of omega-3 (ω3) FAs such as eicosapentaenoic acid (EPA) is promoted due to the activation of the desaturase enzyme. In this way, cells have enough energy to produce or activate antioxidant protection mechanisms and avoid oxidative stress due to heat waves. Contrastingly, under high irradiance and heat wave conditions in temperate environments, photosystems’ protection is achieved by decreasing EPA concentration due to desaturase sensitivity. Essential FAs are transferred in aquatic food webs. Therefore, any alteration in the production of essential FAs by phytoplankton (the main source of ω3) due to climate warming can be transferred to higher trophic levels, with cascading effects for the entire aquatic ecosystem.
Fil: Hernando, Marcelo Pablo. Comisión Nacional de Energía Atómica. Gerencia de Area de Aplicaciones de la Tecnología Nuclear. Gerencia de Radiobiología (Centro Atómico Constituyentes); Argentina. Red de Investigación de Estresores Marinos-costeros en América Latina y el Caribe; Argentina
Fil: Schloss, Irene Ruth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentina. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; Argentina. Universidad Nacional de Tierra del Fuego; Argentina
Fil: de la Rosa, Florencia Grisel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Morón. Secretaria de Ciencia y Tecnología. Instituto de Ciencias Básicas y Experimentales; Argentina
Fil: de Troch, Marleen. University Of Ghent. Faculty Of Sciences; Bélgica - Materia
-
ANTARCTIC
CYANOBACTERIA
ESSENTIAL FAS
INCREASED TEMPERATURE
MICROALGAE
TEMPERATE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/166544
Ver los metadatos del registro completo
id |
CONICETDig_479398a8b91a9b7949c07b173491f3ba |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/166544 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Fatty acids in microalgae and cyanobacteria in a changing world: Contrasting temperate and cold environmentsHernando, Marcelo PabloSchloss, Irene Ruthde la Rosa, Florencia Griselde Troch, MarleenANTARCTICCYANOBACTERIAESSENTIAL FASINCREASED TEMPERATUREMICROALGAETEMPERATEhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Under the present changing climate conditions and the observed temperature increase, it is of high importance to understand its effects on aquatic microbial life, and organisms’ adaptations at the biochemical level. To adjust to temperature or salinity stress and avoid cell damage, organisms alter their degree of fatty acids (FAs) saturation. Thus, temperature is expected to have strong effects on both the quantity and quality of FAs in aquatic microorganisms. Here we review some recent findings about FAs sensitivity to climate change in contrasting environments. Overall, heat waves may induce changes in the relative abundance of polyunsaturated FAs (PUFA). However, the impact of the exposure to warming waters is different in temperate and polar environments. In cold marine waters, high concentration of omega-3 (ω3) FAs such as eicosapentaenoic acid (EPA) is promoted due to the activation of the desaturase enzyme. In this way, cells have enough energy to produce or activate antioxidant protection mechanisms and avoid oxidative stress due to heat waves. Contrastingly, under high irradiance and heat wave conditions in temperate environments, photosystems’ protection is achieved by decreasing EPA concentration due to desaturase sensitivity. Essential FAs are transferred in aquatic food webs. Therefore, any alteration in the production of essential FAs by phytoplankton (the main source of ω3) due to climate warming can be transferred to higher trophic levels, with cascading effects for the entire aquatic ecosystem.Fil: Hernando, Marcelo Pablo. Comisión Nacional de Energía Atómica. Gerencia de Area de Aplicaciones de la Tecnología Nuclear. Gerencia de Radiobiología (Centro Atómico Constituyentes); Argentina. Red de Investigación de Estresores Marinos-costeros en América Latina y el Caribe; ArgentinaFil: Schloss, Irene Ruth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentina. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; Argentina. Universidad Nacional de Tierra del Fuego; ArgentinaFil: de la Rosa, Florencia Grisel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Morón. Secretaria de Ciencia y Tecnología. Instituto de Ciencias Básicas y Experimentales; ArgentinaFil: de Troch, Marleen. University Of Ghent. Faculty Of Sciences; BélgicaTech Science Press2021-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/166544Hernando, Marcelo Pablo; Schloss, Irene Ruth; de la Rosa, Florencia Grisel; de Troch, Marleen; Fatty acids in microalgae and cyanobacteria in a changing world: Contrasting temperate and cold environments; Tech Science Press; Biocell; 46; 3; 11-2021; 607-6210327-95451667-5746CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.techscience.com/biocell/v46n3/45630info:eu-repo/semantics/altIdentifier/doi/10.32604/biocell.2022.017309info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:10:03Zoai:ri.conicet.gov.ar:11336/166544instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:10:03.455CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Fatty acids in microalgae and cyanobacteria in a changing world: Contrasting temperate and cold environments |
title |
Fatty acids in microalgae and cyanobacteria in a changing world: Contrasting temperate and cold environments |
spellingShingle |
Fatty acids in microalgae and cyanobacteria in a changing world: Contrasting temperate and cold environments Hernando, Marcelo Pablo ANTARCTIC CYANOBACTERIA ESSENTIAL FAS INCREASED TEMPERATURE MICROALGAE TEMPERATE |
title_short |
Fatty acids in microalgae and cyanobacteria in a changing world: Contrasting temperate and cold environments |
title_full |
Fatty acids in microalgae and cyanobacteria in a changing world: Contrasting temperate and cold environments |
title_fullStr |
Fatty acids in microalgae and cyanobacteria in a changing world: Contrasting temperate and cold environments |
title_full_unstemmed |
Fatty acids in microalgae and cyanobacteria in a changing world: Contrasting temperate and cold environments |
title_sort |
Fatty acids in microalgae and cyanobacteria in a changing world: Contrasting temperate and cold environments |
dc.creator.none.fl_str_mv |
Hernando, Marcelo Pablo Schloss, Irene Ruth de la Rosa, Florencia Grisel de Troch, Marleen |
author |
Hernando, Marcelo Pablo |
author_facet |
Hernando, Marcelo Pablo Schloss, Irene Ruth de la Rosa, Florencia Grisel de Troch, Marleen |
author_role |
author |
author2 |
Schloss, Irene Ruth de la Rosa, Florencia Grisel de Troch, Marleen |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
ANTARCTIC CYANOBACTERIA ESSENTIAL FAS INCREASED TEMPERATURE MICROALGAE TEMPERATE |
topic |
ANTARCTIC CYANOBACTERIA ESSENTIAL FAS INCREASED TEMPERATURE MICROALGAE TEMPERATE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Under the present changing climate conditions and the observed temperature increase, it is of high importance to understand its effects on aquatic microbial life, and organisms’ adaptations at the biochemical level. To adjust to temperature or salinity stress and avoid cell damage, organisms alter their degree of fatty acids (FAs) saturation. Thus, temperature is expected to have strong effects on both the quantity and quality of FAs in aquatic microorganisms. Here we review some recent findings about FAs sensitivity to climate change in contrasting environments. Overall, heat waves may induce changes in the relative abundance of polyunsaturated FAs (PUFA). However, the impact of the exposure to warming waters is different in temperate and polar environments. In cold marine waters, high concentration of omega-3 (ω3) FAs such as eicosapentaenoic acid (EPA) is promoted due to the activation of the desaturase enzyme. In this way, cells have enough energy to produce or activate antioxidant protection mechanisms and avoid oxidative stress due to heat waves. Contrastingly, under high irradiance and heat wave conditions in temperate environments, photosystems’ protection is achieved by decreasing EPA concentration due to desaturase sensitivity. Essential FAs are transferred in aquatic food webs. Therefore, any alteration in the production of essential FAs by phytoplankton (the main source of ω3) due to climate warming can be transferred to higher trophic levels, with cascading effects for the entire aquatic ecosystem. Fil: Hernando, Marcelo Pablo. Comisión Nacional de Energía Atómica. Gerencia de Area de Aplicaciones de la Tecnología Nuclear. Gerencia de Radiobiología (Centro Atómico Constituyentes); Argentina. Red de Investigación de Estresores Marinos-costeros en América Latina y el Caribe; Argentina Fil: Schloss, Irene Ruth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentina. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; Argentina. Universidad Nacional de Tierra del Fuego; Argentina Fil: de la Rosa, Florencia Grisel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Morón. Secretaria de Ciencia y Tecnología. Instituto de Ciencias Básicas y Experimentales; Argentina Fil: de Troch, Marleen. University Of Ghent. Faculty Of Sciences; Bélgica |
description |
Under the present changing climate conditions and the observed temperature increase, it is of high importance to understand its effects on aquatic microbial life, and organisms’ adaptations at the biochemical level. To adjust to temperature or salinity stress and avoid cell damage, organisms alter their degree of fatty acids (FAs) saturation. Thus, temperature is expected to have strong effects on both the quantity and quality of FAs in aquatic microorganisms. Here we review some recent findings about FAs sensitivity to climate change in contrasting environments. Overall, heat waves may induce changes in the relative abundance of polyunsaturated FAs (PUFA). However, the impact of the exposure to warming waters is different in temperate and polar environments. In cold marine waters, high concentration of omega-3 (ω3) FAs such as eicosapentaenoic acid (EPA) is promoted due to the activation of the desaturase enzyme. In this way, cells have enough energy to produce or activate antioxidant protection mechanisms and avoid oxidative stress due to heat waves. Contrastingly, under high irradiance and heat wave conditions in temperate environments, photosystems’ protection is achieved by decreasing EPA concentration due to desaturase sensitivity. Essential FAs are transferred in aquatic food webs. Therefore, any alteration in the production of essential FAs by phytoplankton (the main source of ω3) due to climate warming can be transferred to higher trophic levels, with cascading effects for the entire aquatic ecosystem. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/166544 Hernando, Marcelo Pablo; Schloss, Irene Ruth; de la Rosa, Florencia Grisel; de Troch, Marleen; Fatty acids in microalgae and cyanobacteria in a changing world: Contrasting temperate and cold environments; Tech Science Press; Biocell; 46; 3; 11-2021; 607-621 0327-9545 1667-5746 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/166544 |
identifier_str_mv |
Hernando, Marcelo Pablo; Schloss, Irene Ruth; de la Rosa, Florencia Grisel; de Troch, Marleen; Fatty acids in microalgae and cyanobacteria in a changing world: Contrasting temperate and cold environments; Tech Science Press; Biocell; 46; 3; 11-2021; 607-621 0327-9545 1667-5746 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.techscience.com/biocell/v46n3/45630 info:eu-repo/semantics/altIdentifier/doi/10.32604/biocell.2022.017309 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Tech Science Press |
publisher.none.fl_str_mv |
Tech Science Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613985431715840 |
score |
13.070432 |