Post-pandemic performance of micro, small and medium-sized enterprises: A Self-organizing Maps application
- Autores
- Martinez, Lisana Belén; Scherger, Valeria Paola; Orazi, Sofia
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper examines the post-pandemic performance of micro, small, and medium-sized firms using Self-Organizing Maps (SOMs), a type of Artificial Neural Network that groups patterns based on their similarities. The goal is to identify the key characteristics that enable firms to face market changes and overcome the effects of the global COVID-19 pandemic crisis. Considering business failure theory, a set of critical factors (including internal production processes, firm age, number of employees, resilience, financial resources, commercial strategies, management, and the impact of external factors) is used to assess the performance of Argentinian firms. The study categorizes these firms into four clusters based on their patterns. The results reveal a trade-off between a firm’s age and its number of employees, confirming that younger firms with fewer employees, limited financial resources, relatively weaker management, internal production process issues, and lower resilience tend to perform poorly, despite facing fewer impact of external factors. Consequently, the findings emphasize the significance of internal fundamentals and resilience in achieving success or avoiding failure. This highlights the effectiveness of SOM as a tool to visualize the characteristics that lead to successful paths and the survival of firms.
Fil: Martinez, Lisana Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina. Provincia de Buenos Aires. Dirección General de Cultura y Educación. Universidad Provincial del Sudoeste; Argentina
Fil: Scherger, Valeria Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina
Fil: Orazi, Sofia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina - Materia
-
BUSINESS FAILURE
BUSINESS PERFORMANCE
COVID-19
SMES
SOM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/250304
Ver los metadatos del registro completo
id |
CONICETDig_475e3860f1ad8780b96eebf2c099e5cf |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/250304 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Post-pandemic performance of micro, small and medium-sized enterprises: A Self-organizing Maps applicationMartinez, Lisana BelénScherger, Valeria PaolaOrazi, SofiaBUSINESS FAILUREBUSINESS PERFORMANCECOVID-19SMESSOMhttps://purl.org/becyt/ford/5.2https://purl.org/becyt/ford/5This paper examines the post-pandemic performance of micro, small, and medium-sized firms using Self-Organizing Maps (SOMs), a type of Artificial Neural Network that groups patterns based on their similarities. The goal is to identify the key characteristics that enable firms to face market changes and overcome the effects of the global COVID-19 pandemic crisis. Considering business failure theory, a set of critical factors (including internal production processes, firm age, number of employees, resilience, financial resources, commercial strategies, management, and the impact of external factors) is used to assess the performance of Argentinian firms. The study categorizes these firms into four clusters based on their patterns. The results reveal a trade-off between a firm’s age and its number of employees, confirming that younger firms with fewer employees, limited financial resources, relatively weaker management, internal production process issues, and lower resilience tend to perform poorly, despite facing fewer impact of external factors. Consequently, the findings emphasize the significance of internal fundamentals and resilience in achieving success or avoiding failure. This highlights the effectiveness of SOM as a tool to visualize the characteristics that lead to successful paths and the survival of firms.Fil: Martinez, Lisana Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina. Provincia de Buenos Aires. Dirección General de Cultura y Educación. Universidad Provincial del Sudoeste; ArgentinaFil: Scherger, Valeria Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; ArgentinaFil: Orazi, Sofia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; ArgentinaTaylor & Francis2023-11-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/250304Martinez, Lisana Belén; Scherger, Valeria Paola; Orazi, Sofia; Post-pandemic performance of micro, small and medium-sized enterprises: A Self-organizing Maps application; Taylor & Francis; Cogent Business & Management; 10; 3; 5-11-2023; 1-132331-1975CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/23311975.2023.2276944info:eu-repo/semantics/altIdentifier/doi/10.1080/23311975.2023.2276944info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:20Zoai:ri.conicet.gov.ar:11336/250304instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:20.368CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Post-pandemic performance of micro, small and medium-sized enterprises: A Self-organizing Maps application |
title |
Post-pandemic performance of micro, small and medium-sized enterprises: A Self-organizing Maps application |
spellingShingle |
Post-pandemic performance of micro, small and medium-sized enterprises: A Self-organizing Maps application Martinez, Lisana Belén BUSINESS FAILURE BUSINESS PERFORMANCE COVID-19 SMES SOM |
title_short |
Post-pandemic performance of micro, small and medium-sized enterprises: A Self-organizing Maps application |
title_full |
Post-pandemic performance of micro, small and medium-sized enterprises: A Self-organizing Maps application |
title_fullStr |
Post-pandemic performance of micro, small and medium-sized enterprises: A Self-organizing Maps application |
title_full_unstemmed |
Post-pandemic performance of micro, small and medium-sized enterprises: A Self-organizing Maps application |
title_sort |
Post-pandemic performance of micro, small and medium-sized enterprises: A Self-organizing Maps application |
dc.creator.none.fl_str_mv |
Martinez, Lisana Belén Scherger, Valeria Paola Orazi, Sofia |
author |
Martinez, Lisana Belén |
author_facet |
Martinez, Lisana Belén Scherger, Valeria Paola Orazi, Sofia |
author_role |
author |
author2 |
Scherger, Valeria Paola Orazi, Sofia |
author2_role |
author author |
dc.subject.none.fl_str_mv |
BUSINESS FAILURE BUSINESS PERFORMANCE COVID-19 SMES SOM |
topic |
BUSINESS FAILURE BUSINESS PERFORMANCE COVID-19 SMES SOM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/5.2 https://purl.org/becyt/ford/5 |
dc.description.none.fl_txt_mv |
This paper examines the post-pandemic performance of micro, small, and medium-sized firms using Self-Organizing Maps (SOMs), a type of Artificial Neural Network that groups patterns based on their similarities. The goal is to identify the key characteristics that enable firms to face market changes and overcome the effects of the global COVID-19 pandemic crisis. Considering business failure theory, a set of critical factors (including internal production processes, firm age, number of employees, resilience, financial resources, commercial strategies, management, and the impact of external factors) is used to assess the performance of Argentinian firms. The study categorizes these firms into four clusters based on their patterns. The results reveal a trade-off between a firm’s age and its number of employees, confirming that younger firms with fewer employees, limited financial resources, relatively weaker management, internal production process issues, and lower resilience tend to perform poorly, despite facing fewer impact of external factors. Consequently, the findings emphasize the significance of internal fundamentals and resilience in achieving success or avoiding failure. This highlights the effectiveness of SOM as a tool to visualize the characteristics that lead to successful paths and the survival of firms. Fil: Martinez, Lisana Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina. Provincia de Buenos Aires. Dirección General de Cultura y Educación. Universidad Provincial del Sudoeste; Argentina Fil: Scherger, Valeria Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina Fil: Orazi, Sofia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina |
description |
This paper examines the post-pandemic performance of micro, small, and medium-sized firms using Self-Organizing Maps (SOMs), a type of Artificial Neural Network that groups patterns based on their similarities. The goal is to identify the key characteristics that enable firms to face market changes and overcome the effects of the global COVID-19 pandemic crisis. Considering business failure theory, a set of critical factors (including internal production processes, firm age, number of employees, resilience, financial resources, commercial strategies, management, and the impact of external factors) is used to assess the performance of Argentinian firms. The study categorizes these firms into four clusters based on their patterns. The results reveal a trade-off between a firm’s age and its number of employees, confirming that younger firms with fewer employees, limited financial resources, relatively weaker management, internal production process issues, and lower resilience tend to perform poorly, despite facing fewer impact of external factors. Consequently, the findings emphasize the significance of internal fundamentals and resilience in achieving success or avoiding failure. This highlights the effectiveness of SOM as a tool to visualize the characteristics that lead to successful paths and the survival of firms. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-11-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/250304 Martinez, Lisana Belén; Scherger, Valeria Paola; Orazi, Sofia; Post-pandemic performance of micro, small and medium-sized enterprises: A Self-organizing Maps application; Taylor & Francis; Cogent Business & Management; 10; 3; 5-11-2023; 1-13 2331-1975 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/250304 |
identifier_str_mv |
Martinez, Lisana Belén; Scherger, Valeria Paola; Orazi, Sofia; Post-pandemic performance of micro, small and medium-sized enterprises: A Self-organizing Maps application; Taylor & Francis; Cogent Business & Management; 10; 3; 5-11-2023; 1-13 2331-1975 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/23311975.2023.2276944 info:eu-repo/semantics/altIdentifier/doi/10.1080/23311975.2023.2276944 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269338656047104 |
score |
13.13397 |