Optimum Integration Procedure for Connectionist and Dynamic Field Equations
- Autores
- Rieznik, Andrés Anibal; Di Tella, Rocco; Schvartzman, Lara; Babino, Andrés
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Connectionist and dynamic field models consist of a set of coupled first-order differential equations describing the evolution in time of different units. We compare three numerical methods for the integration of these equations: the Euler method, and two methods we have developed and present here: a modified version of the fourth-order Runge Kutta method, and one semi-analytical method. We apply them to solve a well-known nonlinear connectionist model of retrieval in single-digit multiplication, and show that, in many regimes, the semi-analytical and modified Runge Kutta methods outperform the Euler method, in some regimes by more than three orders of magnitude. Given the outstanding difference in execution time of the methods, and that the EM is widely used, we conclude that the researchers in the field can greatly benefit from our analysis and developed methods.
Fil: Rieznik, Andrés Anibal. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Instituto de Neurología Cognitiva. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Fundación Favaloro. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt; Argentina
Fil: Di Tella, Rocco. Universidad de Buenos Aires; Argentina
Fil: Schvartzman, Lara. Universidad de Buenos Aires; Argentina
Fil: Babino, Andrés. The Rockefeller University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
COGNITIVE MODELS
COGNITIVE NEUROSCIENCE
CONNECTIONISM AND NEURAL NETS
NEUROROBOTIC
NUMERICAL OPTIMISATION TECHNIQUES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/171869
Ver los metadatos del registro completo
id |
CONICETDig_475a6607237b79e7c49fb12bc6c8dfe5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/171869 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Optimum Integration Procedure for Connectionist and Dynamic Field EquationsRieznik, Andrés AnibalDi Tella, RoccoSchvartzman, LaraBabino, AndrésCOGNITIVE MODELSCOGNITIVE NEUROSCIENCECONNECTIONISM AND NEURAL NETSNEUROROBOTICNUMERICAL OPTIMISATION TECHNIQUEShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Connectionist and dynamic field models consist of a set of coupled first-order differential equations describing the evolution in time of different units. We compare three numerical methods for the integration of these equations: the Euler method, and two methods we have developed and present here: a modified version of the fourth-order Runge Kutta method, and one semi-analytical method. We apply them to solve a well-known nonlinear connectionist model of retrieval in single-digit multiplication, and show that, in many regimes, the semi-analytical and modified Runge Kutta methods outperform the Euler method, in some regimes by more than three orders of magnitude. Given the outstanding difference in execution time of the methods, and that the EM is widely used, we conclude that the researchers in the field can greatly benefit from our analysis and developed methods.Fil: Rieznik, Andrés Anibal. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Instituto de Neurología Cognitiva. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Fundación Favaloro. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt; ArgentinaFil: Di Tella, Rocco. Universidad de Buenos Aires; ArgentinaFil: Schvartzman, Lara. Universidad de Buenos Aires; ArgentinaFil: Babino, Andrés. The Rockefeller University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFrontiers Media2021-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/171869Rieznik, Andrés Anibal; Di Tella, Rocco; Schvartzman, Lara; Babino, Andrés; Optimum Integration Procedure for Connectionist and Dynamic Field Equations; Frontiers Media; Frontiers in Neurorobotics; 15; 5-2021; 1-61662-5218CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3389/fnbot.2021.670895info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fnbot.2021.670895/fullinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:47Zoai:ri.conicet.gov.ar:11336/171869instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:47.903CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Optimum Integration Procedure for Connectionist and Dynamic Field Equations |
title |
Optimum Integration Procedure for Connectionist and Dynamic Field Equations |
spellingShingle |
Optimum Integration Procedure for Connectionist and Dynamic Field Equations Rieznik, Andrés Anibal COGNITIVE MODELS COGNITIVE NEUROSCIENCE CONNECTIONISM AND NEURAL NETS NEUROROBOTIC NUMERICAL OPTIMISATION TECHNIQUES |
title_short |
Optimum Integration Procedure for Connectionist and Dynamic Field Equations |
title_full |
Optimum Integration Procedure for Connectionist and Dynamic Field Equations |
title_fullStr |
Optimum Integration Procedure for Connectionist and Dynamic Field Equations |
title_full_unstemmed |
Optimum Integration Procedure for Connectionist and Dynamic Field Equations |
title_sort |
Optimum Integration Procedure for Connectionist and Dynamic Field Equations |
dc.creator.none.fl_str_mv |
Rieznik, Andrés Anibal Di Tella, Rocco Schvartzman, Lara Babino, Andrés |
author |
Rieznik, Andrés Anibal |
author_facet |
Rieznik, Andrés Anibal Di Tella, Rocco Schvartzman, Lara Babino, Andrés |
author_role |
author |
author2 |
Di Tella, Rocco Schvartzman, Lara Babino, Andrés |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
COGNITIVE MODELS COGNITIVE NEUROSCIENCE CONNECTIONISM AND NEURAL NETS NEUROROBOTIC NUMERICAL OPTIMISATION TECHNIQUES |
topic |
COGNITIVE MODELS COGNITIVE NEUROSCIENCE CONNECTIONISM AND NEURAL NETS NEUROROBOTIC NUMERICAL OPTIMISATION TECHNIQUES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Connectionist and dynamic field models consist of a set of coupled first-order differential equations describing the evolution in time of different units. We compare three numerical methods for the integration of these equations: the Euler method, and two methods we have developed and present here: a modified version of the fourth-order Runge Kutta method, and one semi-analytical method. We apply them to solve a well-known nonlinear connectionist model of retrieval in single-digit multiplication, and show that, in many regimes, the semi-analytical and modified Runge Kutta methods outperform the Euler method, in some regimes by more than three orders of magnitude. Given the outstanding difference in execution time of the methods, and that the EM is widely used, we conclude that the researchers in the field can greatly benefit from our analysis and developed methods. Fil: Rieznik, Andrés Anibal. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Instituto de Neurología Cognitiva. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Fundación Favaloro. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt; Argentina Fil: Di Tella, Rocco. Universidad de Buenos Aires; Argentina Fil: Schvartzman, Lara. Universidad de Buenos Aires; Argentina Fil: Babino, Andrés. The Rockefeller University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Connectionist and dynamic field models consist of a set of coupled first-order differential equations describing the evolution in time of different units. We compare three numerical methods for the integration of these equations: the Euler method, and two methods we have developed and present here: a modified version of the fourth-order Runge Kutta method, and one semi-analytical method. We apply them to solve a well-known nonlinear connectionist model of retrieval in single-digit multiplication, and show that, in many regimes, the semi-analytical and modified Runge Kutta methods outperform the Euler method, in some regimes by more than three orders of magnitude. Given the outstanding difference in execution time of the methods, and that the EM is widely used, we conclude that the researchers in the field can greatly benefit from our analysis and developed methods. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/171869 Rieznik, Andrés Anibal; Di Tella, Rocco; Schvartzman, Lara; Babino, Andrés; Optimum Integration Procedure for Connectionist and Dynamic Field Equations; Frontiers Media; Frontiers in Neurorobotics; 15; 5-2021; 1-6 1662-5218 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/171869 |
identifier_str_mv |
Rieznik, Andrés Anibal; Di Tella, Rocco; Schvartzman, Lara; Babino, Andrés; Optimum Integration Procedure for Connectionist and Dynamic Field Equations; Frontiers Media; Frontiers in Neurorobotics; 15; 5-2021; 1-6 1662-5218 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3389/fnbot.2021.670895 info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fnbot.2021.670895/full |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Frontiers Media |
publisher.none.fl_str_mv |
Frontiers Media |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269248389382144 |
score |
13.13397 |