Social Relations and Methods in Recommender Systems: A Systematic Review

Autores
Medel Canales, Diego Alejandro; González González, Carina Soledad; Aciar, Silvana Vanesa
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
With the constant growth of information, data sparsity problems, and cold start have become a complex problem in obtaining accurate recommendations. Currently, authors consider the user´s historical behavior and find contextual information about the user, such as social relationships, time information, and location. In this work, a systematic review of the literature on recommender systems that use the information on social relationships between users was carried out. As the main findings, social relations were classified into three groups: trust, friend activities, and user interactions. Likewise, the collaborative filtering approach was the most used, and with the best results, considering the methods based on memory and model. The most used metrics that we found, and the recommendation methods studied in mobile applications are presented. The information provided by this study can be valuable to increase the precision of the recommendations.
Fil: Medel Canales, Diego Alejandro. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Informática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina
Fil: González González, Carina Soledad. Universidad de La Laguna; España
Fil: Aciar, Silvana Vanesa. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Informática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina
Materia
COLLABORATIVE FILTERING
RECOMMENDATION SYSTEMS
SYSTEMATIC REVIEW
SOCIAL RELATIONSHIPS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/157958

id CONICETDig_46cd193223ffbba745ddd2ef034fda6a
oai_identifier_str oai:ri.conicet.gov.ar:11336/157958
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Social Relations and Methods in Recommender Systems: A Systematic ReviewMedel Canales, Diego AlejandroGonzález González, Carina SoledadAciar, Silvana VanesaCOLLABORATIVE FILTERINGRECOMMENDATION SYSTEMSSYSTEMATIC REVIEWSOCIAL RELATIONSHIPShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1With the constant growth of information, data sparsity problems, and cold start have become a complex problem in obtaining accurate recommendations. Currently, authors consider the user´s historical behavior and find contextual information about the user, such as social relationships, time information, and location. In this work, a systematic review of the literature on recommender systems that use the information on social relationships between users was carried out. As the main findings, social relations were classified into three groups: trust, friend activities, and user interactions. Likewise, the collaborative filtering approach was the most used, and with the best results, considering the methods based on memory and model. The most used metrics that we found, and the recommendation methods studied in mobile applications are presented. The information provided by this study can be valuable to increase the precision of the recommendations.Fil: Medel Canales, Diego Alejandro. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Informática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; ArgentinaFil: González González, Carina Soledad. Universidad de La Laguna; EspañaFil: Aciar, Silvana Vanesa. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Informática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; ArgentinaUniversidad Internacional de La Rioja2021-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/157958Medel Canales, Diego Alejandro; González González, Carina Soledad; Aciar, Silvana Vanesa; Social Relations and Methods in Recommender Systems: A Systematic Review; Universidad Internacional de La Rioja; International Journal of Interactive Multimedia and Artificial Intelligence; 2021; 12-2021; 1-111989-1660CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ijimai.org/journal/sites/default/files/2021-12/ip2021_12_004.pdfinfo:eu-repo/semantics/altIdentifier/doi/10.9781/ijimai.2021.12.004info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:02:15Zoai:ri.conicet.gov.ar:11336/157958instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:02:15.714CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Social Relations and Methods in Recommender Systems: A Systematic Review
title Social Relations and Methods in Recommender Systems: A Systematic Review
spellingShingle Social Relations and Methods in Recommender Systems: A Systematic Review
Medel Canales, Diego Alejandro
COLLABORATIVE FILTERING
RECOMMENDATION SYSTEMS
SYSTEMATIC REVIEW
SOCIAL RELATIONSHIPS
title_short Social Relations and Methods in Recommender Systems: A Systematic Review
title_full Social Relations and Methods in Recommender Systems: A Systematic Review
title_fullStr Social Relations and Methods in Recommender Systems: A Systematic Review
title_full_unstemmed Social Relations and Methods in Recommender Systems: A Systematic Review
title_sort Social Relations and Methods in Recommender Systems: A Systematic Review
dc.creator.none.fl_str_mv Medel Canales, Diego Alejandro
González González, Carina Soledad
Aciar, Silvana Vanesa
author Medel Canales, Diego Alejandro
author_facet Medel Canales, Diego Alejandro
González González, Carina Soledad
Aciar, Silvana Vanesa
author_role author
author2 González González, Carina Soledad
Aciar, Silvana Vanesa
author2_role author
author
dc.subject.none.fl_str_mv COLLABORATIVE FILTERING
RECOMMENDATION SYSTEMS
SYSTEMATIC REVIEW
SOCIAL RELATIONSHIPS
topic COLLABORATIVE FILTERING
RECOMMENDATION SYSTEMS
SYSTEMATIC REVIEW
SOCIAL RELATIONSHIPS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv With the constant growth of information, data sparsity problems, and cold start have become a complex problem in obtaining accurate recommendations. Currently, authors consider the user´s historical behavior and find contextual information about the user, such as social relationships, time information, and location. In this work, a systematic review of the literature on recommender systems that use the information on social relationships between users was carried out. As the main findings, social relations were classified into three groups: trust, friend activities, and user interactions. Likewise, the collaborative filtering approach was the most used, and with the best results, considering the methods based on memory and model. The most used metrics that we found, and the recommendation methods studied in mobile applications are presented. The information provided by this study can be valuable to increase the precision of the recommendations.
Fil: Medel Canales, Diego Alejandro. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Informática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina
Fil: González González, Carina Soledad. Universidad de La Laguna; España
Fil: Aciar, Silvana Vanesa. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Informática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina
description With the constant growth of information, data sparsity problems, and cold start have become a complex problem in obtaining accurate recommendations. Currently, authors consider the user´s historical behavior and find contextual information about the user, such as social relationships, time information, and location. In this work, a systematic review of the literature on recommender systems that use the information on social relationships between users was carried out. As the main findings, social relations were classified into three groups: trust, friend activities, and user interactions. Likewise, the collaborative filtering approach was the most used, and with the best results, considering the methods based on memory and model. The most used metrics that we found, and the recommendation methods studied in mobile applications are presented. The information provided by this study can be valuable to increase the precision of the recommendations.
publishDate 2021
dc.date.none.fl_str_mv 2021-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/157958
Medel Canales, Diego Alejandro; González González, Carina Soledad; Aciar, Silvana Vanesa; Social Relations and Methods in Recommender Systems: A Systematic Review; Universidad Internacional de La Rioja; International Journal of Interactive Multimedia and Artificial Intelligence; 2021; 12-2021; 1-11
1989-1660
CONICET Digital
CONICET
url http://hdl.handle.net/11336/157958
identifier_str_mv Medel Canales, Diego Alejandro; González González, Carina Soledad; Aciar, Silvana Vanesa; Social Relations and Methods in Recommender Systems: A Systematic Review; Universidad Internacional de La Rioja; International Journal of Interactive Multimedia and Artificial Intelligence; 2021; 12-2021; 1-11
1989-1660
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.ijimai.org/journal/sites/default/files/2021-12/ip2021_12_004.pdf
info:eu-repo/semantics/altIdentifier/doi/10.9781/ijimai.2021.12.004
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidad Internacional de La Rioja
publisher.none.fl_str_mv Universidad Internacional de La Rioja
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269746598248448
score 13.13397