Social Relations and Methods in Recommender Systems: A Systematic Review
- Autores
- Medel Canales, Diego Alejandro; González González, Carina Soledad; Aciar, Silvana Vanesa
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- With the constant growth of information, data sparsity problems, and cold start have become a complex problem in obtaining accurate recommendations. Currently, authors consider the user´s historical behavior and find contextual information about the user, such as social relationships, time information, and location. In this work, a systematic review of the literature on recommender systems that use the information on social relationships between users was carried out. As the main findings, social relations were classified into three groups: trust, friend activities, and user interactions. Likewise, the collaborative filtering approach was the most used, and with the best results, considering the methods based on memory and model. The most used metrics that we found, and the recommendation methods studied in mobile applications are presented. The information provided by this study can be valuable to increase the precision of the recommendations.
Fil: Medel Canales, Diego Alejandro. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Informática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina
Fil: González González, Carina Soledad. Universidad de La Laguna; España
Fil: Aciar, Silvana Vanesa. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Informática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina - Materia
-
COLLABORATIVE FILTERING
RECOMMENDATION SYSTEMS
SYSTEMATIC REVIEW
SOCIAL RELATIONSHIPS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/157958
Ver los metadatos del registro completo
id |
CONICETDig_46cd193223ffbba745ddd2ef034fda6a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/157958 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Social Relations and Methods in Recommender Systems: A Systematic ReviewMedel Canales, Diego AlejandroGonzález González, Carina SoledadAciar, Silvana VanesaCOLLABORATIVE FILTERINGRECOMMENDATION SYSTEMSSYSTEMATIC REVIEWSOCIAL RELATIONSHIPShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1With the constant growth of information, data sparsity problems, and cold start have become a complex problem in obtaining accurate recommendations. Currently, authors consider the user´s historical behavior and find contextual information about the user, such as social relationships, time information, and location. In this work, a systematic review of the literature on recommender systems that use the information on social relationships between users was carried out. As the main findings, social relations were classified into three groups: trust, friend activities, and user interactions. Likewise, the collaborative filtering approach was the most used, and with the best results, considering the methods based on memory and model. The most used metrics that we found, and the recommendation methods studied in mobile applications are presented. The information provided by this study can be valuable to increase the precision of the recommendations.Fil: Medel Canales, Diego Alejandro. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Informática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; ArgentinaFil: González González, Carina Soledad. Universidad de La Laguna; EspañaFil: Aciar, Silvana Vanesa. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Informática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; ArgentinaUniversidad Internacional de La Rioja2021-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/157958Medel Canales, Diego Alejandro; González González, Carina Soledad; Aciar, Silvana Vanesa; Social Relations and Methods in Recommender Systems: A Systematic Review; Universidad Internacional de La Rioja; International Journal of Interactive Multimedia and Artificial Intelligence; 2021; 12-2021; 1-111989-1660CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ijimai.org/journal/sites/default/files/2021-12/ip2021_12_004.pdfinfo:eu-repo/semantics/altIdentifier/doi/10.9781/ijimai.2021.12.004info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:02:15Zoai:ri.conicet.gov.ar:11336/157958instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:02:15.714CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Social Relations and Methods in Recommender Systems: A Systematic Review |
title |
Social Relations and Methods in Recommender Systems: A Systematic Review |
spellingShingle |
Social Relations and Methods in Recommender Systems: A Systematic Review Medel Canales, Diego Alejandro COLLABORATIVE FILTERING RECOMMENDATION SYSTEMS SYSTEMATIC REVIEW SOCIAL RELATIONSHIPS |
title_short |
Social Relations and Methods in Recommender Systems: A Systematic Review |
title_full |
Social Relations and Methods in Recommender Systems: A Systematic Review |
title_fullStr |
Social Relations and Methods in Recommender Systems: A Systematic Review |
title_full_unstemmed |
Social Relations and Methods in Recommender Systems: A Systematic Review |
title_sort |
Social Relations and Methods in Recommender Systems: A Systematic Review |
dc.creator.none.fl_str_mv |
Medel Canales, Diego Alejandro González González, Carina Soledad Aciar, Silvana Vanesa |
author |
Medel Canales, Diego Alejandro |
author_facet |
Medel Canales, Diego Alejandro González González, Carina Soledad Aciar, Silvana Vanesa |
author_role |
author |
author2 |
González González, Carina Soledad Aciar, Silvana Vanesa |
author2_role |
author author |
dc.subject.none.fl_str_mv |
COLLABORATIVE FILTERING RECOMMENDATION SYSTEMS SYSTEMATIC REVIEW SOCIAL RELATIONSHIPS |
topic |
COLLABORATIVE FILTERING RECOMMENDATION SYSTEMS SYSTEMATIC REVIEW SOCIAL RELATIONSHIPS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
With the constant growth of information, data sparsity problems, and cold start have become a complex problem in obtaining accurate recommendations. Currently, authors consider the user´s historical behavior and find contextual information about the user, such as social relationships, time information, and location. In this work, a systematic review of the literature on recommender systems that use the information on social relationships between users was carried out. As the main findings, social relations were classified into three groups: trust, friend activities, and user interactions. Likewise, the collaborative filtering approach was the most used, and with the best results, considering the methods based on memory and model. The most used metrics that we found, and the recommendation methods studied in mobile applications are presented. The information provided by this study can be valuable to increase the precision of the recommendations. Fil: Medel Canales, Diego Alejandro. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Informática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina Fil: González González, Carina Soledad. Universidad de La Laguna; España Fil: Aciar, Silvana Vanesa. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Informática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina |
description |
With the constant growth of information, data sparsity problems, and cold start have become a complex problem in obtaining accurate recommendations. Currently, authors consider the user´s historical behavior and find contextual information about the user, such as social relationships, time information, and location. In this work, a systematic review of the literature on recommender systems that use the information on social relationships between users was carried out. As the main findings, social relations were classified into three groups: trust, friend activities, and user interactions. Likewise, the collaborative filtering approach was the most used, and with the best results, considering the methods based on memory and model. The most used metrics that we found, and the recommendation methods studied in mobile applications are presented. The information provided by this study can be valuable to increase the precision of the recommendations. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/157958 Medel Canales, Diego Alejandro; González González, Carina Soledad; Aciar, Silvana Vanesa; Social Relations and Methods in Recommender Systems: A Systematic Review; Universidad Internacional de La Rioja; International Journal of Interactive Multimedia and Artificial Intelligence; 2021; 12-2021; 1-11 1989-1660 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/157958 |
identifier_str_mv |
Medel Canales, Diego Alejandro; González González, Carina Soledad; Aciar, Silvana Vanesa; Social Relations and Methods in Recommender Systems: A Systematic Review; Universidad Internacional de La Rioja; International Journal of Interactive Multimedia and Artificial Intelligence; 2021; 12-2021; 1-11 1989-1660 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.ijimai.org/journal/sites/default/files/2021-12/ip2021_12_004.pdf info:eu-repo/semantics/altIdentifier/doi/10.9781/ijimai.2021.12.004 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Internacional de La Rioja |
publisher.none.fl_str_mv |
Universidad Internacional de La Rioja |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269746598248448 |
score |
13.13397 |