In-gap band in the one-dimensional two-orbital Kanamori-Hubbard model with interorbital Coulomb interaction

Autores
Aucar Boidi, Nair Sophia; Fernández García, H.; Núñez Fernández, Yuriel; Hallberg, Karen Astrid
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the electronic spectral properties at zero temperature of the one-dimensional (1D) version of the degenerate two-orbital Kanamori-Hubbard model, one of the well-established frameworks to study transition metal compounds, using state-of-the-art numerical techniques based on the density matrix renormalization group. While the system is Mott insulating for the half-filled case, as expected for an interacting 1D system, we find interesting and rich structures in the single-particle density of states (DOS) for the hole-doped system. In particular, we find the existence of in-gap states which are pulled down to lower energies from the upper Hubbard band with increasing the interorbital Coulomb interaction V. We analyze the composition of the DOS by projecting it onto different local excitations, and we observe that for large dopings these in-gap excitations are formed mainly by interorbital holon-doublon (HD) states and their energies follow approximately the HD states in the atomic limit. We observe that the Hund interaction J increases the width of the in-gap band, as expected from the two-particle fluctuations in the Hamiltonian. The observation of a finite density of states within the gap between the Hubbard bands for this extended 1D model indicates that these systems present a rich excitation spectra which could help us understand the microscopic physics behind multiorbital compounds.
Fil: Aucar Boidi, Nair Sophia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
Fil: Fernández García, H.. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Núñez Fernández, Yuriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Hallberg, Karen Astrid. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
Materia
densidad de estados
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/209972

id CONICETDig_45840ec84866c75bb20e9910ae3d8911
oai_identifier_str oai:ri.conicet.gov.ar:11336/209972
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling In-gap band in the one-dimensional two-orbital Kanamori-Hubbard model with interorbital Coulomb interactionAucar Boidi, Nair SophiaFernández García, H.Núñez Fernández, YurielHallberg, Karen Astriddensidad de estadoshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study the electronic spectral properties at zero temperature of the one-dimensional (1D) version of the degenerate two-orbital Kanamori-Hubbard model, one of the well-established frameworks to study transition metal compounds, using state-of-the-art numerical techniques based on the density matrix renormalization group. While the system is Mott insulating for the half-filled case, as expected for an interacting 1D system, we find interesting and rich structures in the single-particle density of states (DOS) for the hole-doped system. In particular, we find the existence of in-gap states which are pulled down to lower energies from the upper Hubbard band with increasing the interorbital Coulomb interaction V. We analyze the composition of the DOS by projecting it onto different local excitations, and we observe that for large dopings these in-gap excitations are formed mainly by interorbital holon-doublon (HD) states and their energies follow approximately the HD states in the atomic limit. We observe that the Hund interaction J increases the width of the in-gap band, as expected from the two-particle fluctuations in the Hamiltonian. The observation of a finite density of states within the gap between the Hubbard bands for this extended 1D model indicates that these systems present a rich excitation spectra which could help us understand the microscopic physics behind multiorbital compounds.Fil: Aucar Boidi, Nair Sophia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; ArgentinaFil: Fernández García, H.. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Núñez Fernández, Yuriel. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hallberg, Karen Astrid. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; ArgentinaAmerican Physical Society2021-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/209972Aucar Boidi, Nair Sophia; Fernández García, H.; Núñez Fernández, Yuriel; Hallberg, Karen Astrid; In-gap band in the one-dimensional two-orbital Kanamori-Hubbard model with interorbital Coulomb interaction; American Physical Society; Physical Review Research; 3; 4; 12-2021; 888-9992643-1564CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevResearch.3.043213info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:19:10Zoai:ri.conicet.gov.ar:11336/209972instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:19:10.94CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv In-gap band in the one-dimensional two-orbital Kanamori-Hubbard model with interorbital Coulomb interaction
title In-gap band in the one-dimensional two-orbital Kanamori-Hubbard model with interorbital Coulomb interaction
spellingShingle In-gap band in the one-dimensional two-orbital Kanamori-Hubbard model with interorbital Coulomb interaction
Aucar Boidi, Nair Sophia
densidad de estados
title_short In-gap band in the one-dimensional two-orbital Kanamori-Hubbard model with interorbital Coulomb interaction
title_full In-gap band in the one-dimensional two-orbital Kanamori-Hubbard model with interorbital Coulomb interaction
title_fullStr In-gap band in the one-dimensional two-orbital Kanamori-Hubbard model with interorbital Coulomb interaction
title_full_unstemmed In-gap band in the one-dimensional two-orbital Kanamori-Hubbard model with interorbital Coulomb interaction
title_sort In-gap band in the one-dimensional two-orbital Kanamori-Hubbard model with interorbital Coulomb interaction
dc.creator.none.fl_str_mv Aucar Boidi, Nair Sophia
Fernández García, H.
Núñez Fernández, Yuriel
Hallberg, Karen Astrid
author Aucar Boidi, Nair Sophia
author_facet Aucar Boidi, Nair Sophia
Fernández García, H.
Núñez Fernández, Yuriel
Hallberg, Karen Astrid
author_role author
author2 Fernández García, H.
Núñez Fernández, Yuriel
Hallberg, Karen Astrid
author2_role author
author
author
dc.subject.none.fl_str_mv densidad de estados
topic densidad de estados
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the electronic spectral properties at zero temperature of the one-dimensional (1D) version of the degenerate two-orbital Kanamori-Hubbard model, one of the well-established frameworks to study transition metal compounds, using state-of-the-art numerical techniques based on the density matrix renormalization group. While the system is Mott insulating for the half-filled case, as expected for an interacting 1D system, we find interesting and rich structures in the single-particle density of states (DOS) for the hole-doped system. In particular, we find the existence of in-gap states which are pulled down to lower energies from the upper Hubbard band with increasing the interorbital Coulomb interaction V. We analyze the composition of the DOS by projecting it onto different local excitations, and we observe that for large dopings these in-gap excitations are formed mainly by interorbital holon-doublon (HD) states and their energies follow approximately the HD states in the atomic limit. We observe that the Hund interaction J increases the width of the in-gap band, as expected from the two-particle fluctuations in the Hamiltonian. The observation of a finite density of states within the gap between the Hubbard bands for this extended 1D model indicates that these systems present a rich excitation spectra which could help us understand the microscopic physics behind multiorbital compounds.
Fil: Aucar Boidi, Nair Sophia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
Fil: Fernández García, H.. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Núñez Fernández, Yuriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Hallberg, Karen Astrid. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
description We study the electronic spectral properties at zero temperature of the one-dimensional (1D) version of the degenerate two-orbital Kanamori-Hubbard model, one of the well-established frameworks to study transition metal compounds, using state-of-the-art numerical techniques based on the density matrix renormalization group. While the system is Mott insulating for the half-filled case, as expected for an interacting 1D system, we find interesting and rich structures in the single-particle density of states (DOS) for the hole-doped system. In particular, we find the existence of in-gap states which are pulled down to lower energies from the upper Hubbard band with increasing the interorbital Coulomb interaction V. We analyze the composition of the DOS by projecting it onto different local excitations, and we observe that for large dopings these in-gap excitations are formed mainly by interorbital holon-doublon (HD) states and their energies follow approximately the HD states in the atomic limit. We observe that the Hund interaction J increases the width of the in-gap band, as expected from the two-particle fluctuations in the Hamiltonian. The observation of a finite density of states within the gap between the Hubbard bands for this extended 1D model indicates that these systems present a rich excitation spectra which could help us understand the microscopic physics behind multiorbital compounds.
publishDate 2021
dc.date.none.fl_str_mv 2021-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/209972
Aucar Boidi, Nair Sophia; Fernández García, H.; Núñez Fernández, Yuriel; Hallberg, Karen Astrid; In-gap band in the one-dimensional two-orbital Kanamori-Hubbard model with interorbital Coulomb interaction; American Physical Society; Physical Review Research; 3; 4; 12-2021; 888-999
2643-1564
CONICET Digital
CONICET
url http://hdl.handle.net/11336/209972
identifier_str_mv Aucar Boidi, Nair Sophia; Fernández García, H.; Núñez Fernández, Yuriel; Hallberg, Karen Astrid; In-gap band in the one-dimensional two-orbital Kanamori-Hubbard model with interorbital Coulomb interaction; American Physical Society; Physical Review Research; 3; 4; 12-2021; 888-999
2643-1564
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevResearch.3.043213
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606535329021952
score 13.001348