Low quasiparticle coherence temperature in the one-band Hubbard model: A slave-boson approach
- Autores
- Mezio, Alejandro; McKenzie, Ross H.
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We use the Kotliar-Ruckenstein slave-boson formalism to study the temperature dependence of paramagnetic phases of the one-band Hubbard model for a variety of band structures. We calculate the Fermi liquid quasiparticle spectral weight Z and identify the temperature at which it decreases significantly to a crossover to a bad metal region. Near the Mott metal-insulator transition, this coherence temperature Tcoh is much lower than the Fermi temperature of the uncorrelated Fermi gas, as is observed in a broad range of strongly correlated electron materials. After a proper rescaling of temperature and interaction, we find a universal behavior that is independent of the band structure of the system. We obtain the temperature-interaction phase diagram as function of doping, and we compare the temperature dependence of the double occupancy, entropy, and charge compressibility with previous results obtained with dynamical mean-field theory. We analyze the stability of the method by calculating the charge compressibility.
Fil: Mezio, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina. University of Queensland; Australia
Fil: McKenzie, Ross H.. University of Queensland; Australia - Materia
-
METAL-INSULATOR TRANSITION
STRONGLY CORRELATED SYSTEMS
HUBBARD MODEL
SLAVE BOSONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/185868
Ver los metadatos del registro completo
id |
CONICETDig_0083868894dae20c8b4bb1a35d5b1ae9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/185868 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Low quasiparticle coherence temperature in the one-band Hubbard model: A slave-boson approachMezio, AlejandroMcKenzie, Ross H.METAL-INSULATOR TRANSITIONSTRONGLY CORRELATED SYSTEMSHUBBARD MODELSLAVE BOSONShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We use the Kotliar-Ruckenstein slave-boson formalism to study the temperature dependence of paramagnetic phases of the one-band Hubbard model for a variety of band structures. We calculate the Fermi liquid quasiparticle spectral weight Z and identify the temperature at which it decreases significantly to a crossover to a bad metal region. Near the Mott metal-insulator transition, this coherence temperature Tcoh is much lower than the Fermi temperature of the uncorrelated Fermi gas, as is observed in a broad range of strongly correlated electron materials. After a proper rescaling of temperature and interaction, we find a universal behavior that is independent of the band structure of the system. We obtain the temperature-interaction phase diagram as function of doping, and we compare the temperature dependence of the double occupancy, entropy, and charge compressibility with previous results obtained with dynamical mean-field theory. We analyze the stability of the method by calculating the charge compressibility.Fil: Mezio, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina. University of Queensland; AustraliaFil: McKenzie, Ross H.. University of Queensland; AustraliaAmerican Physical Society2017-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/185868Mezio, Alejandro; McKenzie, Ross H.; Low quasiparticle coherence temperature in the one-band Hubbard model: A slave-boson approach; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 96; 3; 7-2017; 1-101098-01212469-9969CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.aps.org/doi/10.1103/PhysRevB.96.035121info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.96.035121info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:40:59Zoai:ri.conicet.gov.ar:11336/185868instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:40:59.532CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Low quasiparticle coherence temperature in the one-band Hubbard model: A slave-boson approach |
title |
Low quasiparticle coherence temperature in the one-band Hubbard model: A slave-boson approach |
spellingShingle |
Low quasiparticle coherence temperature in the one-band Hubbard model: A slave-boson approach Mezio, Alejandro METAL-INSULATOR TRANSITION STRONGLY CORRELATED SYSTEMS HUBBARD MODEL SLAVE BOSONS |
title_short |
Low quasiparticle coherence temperature in the one-band Hubbard model: A slave-boson approach |
title_full |
Low quasiparticle coherence temperature in the one-band Hubbard model: A slave-boson approach |
title_fullStr |
Low quasiparticle coherence temperature in the one-band Hubbard model: A slave-boson approach |
title_full_unstemmed |
Low quasiparticle coherence temperature in the one-band Hubbard model: A slave-boson approach |
title_sort |
Low quasiparticle coherence temperature in the one-band Hubbard model: A slave-boson approach |
dc.creator.none.fl_str_mv |
Mezio, Alejandro McKenzie, Ross H. |
author |
Mezio, Alejandro |
author_facet |
Mezio, Alejandro McKenzie, Ross H. |
author_role |
author |
author2 |
McKenzie, Ross H. |
author2_role |
author |
dc.subject.none.fl_str_mv |
METAL-INSULATOR TRANSITION STRONGLY CORRELATED SYSTEMS HUBBARD MODEL SLAVE BOSONS |
topic |
METAL-INSULATOR TRANSITION STRONGLY CORRELATED SYSTEMS HUBBARD MODEL SLAVE BOSONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We use the Kotliar-Ruckenstein slave-boson formalism to study the temperature dependence of paramagnetic phases of the one-band Hubbard model for a variety of band structures. We calculate the Fermi liquid quasiparticle spectral weight Z and identify the temperature at which it decreases significantly to a crossover to a bad metal region. Near the Mott metal-insulator transition, this coherence temperature Tcoh is much lower than the Fermi temperature of the uncorrelated Fermi gas, as is observed in a broad range of strongly correlated electron materials. After a proper rescaling of temperature and interaction, we find a universal behavior that is independent of the band structure of the system. We obtain the temperature-interaction phase diagram as function of doping, and we compare the temperature dependence of the double occupancy, entropy, and charge compressibility with previous results obtained with dynamical mean-field theory. We analyze the stability of the method by calculating the charge compressibility. Fil: Mezio, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina. University of Queensland; Australia Fil: McKenzie, Ross H.. University of Queensland; Australia |
description |
We use the Kotliar-Ruckenstein slave-boson formalism to study the temperature dependence of paramagnetic phases of the one-band Hubbard model for a variety of band structures. We calculate the Fermi liquid quasiparticle spectral weight Z and identify the temperature at which it decreases significantly to a crossover to a bad metal region. Near the Mott metal-insulator transition, this coherence temperature Tcoh is much lower than the Fermi temperature of the uncorrelated Fermi gas, as is observed in a broad range of strongly correlated electron materials. After a proper rescaling of temperature and interaction, we find a universal behavior that is independent of the band structure of the system. We obtain the temperature-interaction phase diagram as function of doping, and we compare the temperature dependence of the double occupancy, entropy, and charge compressibility with previous results obtained with dynamical mean-field theory. We analyze the stability of the method by calculating the charge compressibility. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/185868 Mezio, Alejandro; McKenzie, Ross H.; Low quasiparticle coherence temperature in the one-band Hubbard model: A slave-boson approach; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 96; 3; 7-2017; 1-10 1098-0121 2469-9969 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/185868 |
identifier_str_mv |
Mezio, Alejandro; McKenzie, Ross H.; Low quasiparticle coherence temperature in the one-band Hubbard model: A slave-boson approach; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 96; 3; 7-2017; 1-10 1098-0121 2469-9969 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.aps.org/doi/10.1103/PhysRevB.96.035121 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.96.035121 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614439378092032 |
score |
13.069144 |