Pharmocologic inhibitors of the mitogen activated protein kinase cascade have the potential to interact with ionizing radiation exposure to induce cell death in carcinoma cells by...
- Autores
- Qiao, Liang; Yacoub, Adly; McKinstry, Robert; Park, Jong Sung; Caron, Ruben Walter; Fisher, Paul B.; Hagan, Michael P.; Grant, Steven; Dent, Paul
- Año de publicación
- 2002
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Recent studies have shown that inhibition of stress-induced signaling via the mitogen activated protein kinase (MAPK) pathway can potentiate the toxic effects of chemotherapeutic drugs and ionizing radiation. Because of these observations, we have further investigated the impact upon growth and survival of mammary (MDA-MB-231, MCF7, T47D), prostate (DU145, LNCaP, PC3) and squamous (A431) carcinoma cells following irradiation and combined long-term exposure to MEK1/2 inhibitors. Exposure of carcinoma cells to ionizing radiation resulted in MAPK pathway activation initially (0-4h) and modestly enhanced MAPK activity at later times (24h-96h). Inhibition of radiation-induced MAPK activation using MEK1/2 inhibitors potentiated radiation-induced apoptosis in two waves, at 21-30h and 96-144h after exposure. The potentiation of apoptosis was not observed in MCF7, LNCaP, or PC3 cells. At 24h, the potentiation of apoptosis was independent of radiation dose whereas at 108h, apoptosis correlated with increasing dose. Removal of the MEK1/2 inhibitor either 6h or 12h after exposure abolished the potentiation of apoptosis at 24h. At this time, the potentiation of apoptosis correlated with cleavage of pro-caspases -8, -9 and -3, and with release of cytochrome c into the cytosol. Inhibition of caspase function using a pan-caspase inhibitor ZVAD blocked the enhanced apoptotic response at 24h. Selective inhibition of caspase 9 with LEHD or caspase 8 with IETD partially blunted the apoptotic response in MDA-MB-231, DU145 and A431 cells, whereas inhibition of both caspases reduced the response by >90%. Removal of the MEK1/2 inhibitor either 24h or 48h after exposure abolished the potentiation of apoptosis at 108h. Incubation of cells with ZVAD for 108h also abolished the potentiation of apoptosis. In general agreement with the finding that prolonged inhibition of MEK1/2 was required to enhance radiation-induced apoptosis at 108h, omission of MEK1/2 inhibitor from the culture media during assessment of clonogenic survival resulted in either little or no significant alteration in radiosensitivity. Collectively, our data show that combined exposure to radiation and MEK1/2 inhibitors can reduce survival in some, but not all, tumor cell types. Prolonged blunting of MAPK pathway function following radiation exposure is required for MEK1/2 inhibitors to have any effect on carcinoma cell radiosensitivity.
Fil: Qiao, Liang. Virginia Commonwealth University; Estados Unidos
Fil: Yacoub, Adly. Virginia Commonwealth University; Estados Unidos
Fil: McKinstry, Robert. Virginia Commonwealth University; Estados Unidos
Fil: Park, Jong Sung. Virginia Commonwealth University; Estados Unidos
Fil: Caron, Ruben Walter. Virginia Commonwealth University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; Argentina
Fil: Fisher, Paul B.. Columbia University. College of Physicians and Surgeons; Estados Unidos
Fil: Hagan, Michael P.. Virginia Commonwealth University; Estados Unidos
Fil: Grant, Steven. Virginia Commonwealth University; Estados Unidos
Fil: Dent, Paul. Virginia Commonwealth University; Estados Unidos - Materia
-
APOPTOSIS
CASPASE
IONIZING RADIATION
MAP KINASE
MAPK
SURVIVAL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/128235
Ver los metadatos del registro completo
id |
CONICETDig_450be2d9d5861d6bd65c6501fbf06537 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/128235 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Pharmocologic inhibitors of the mitogen activated protein kinase cascade have the potential to interact with ionizing radiation exposure to induce cell death in carcinoma cells by multiple mechanismsQiao, LiangYacoub, AdlyMcKinstry, RobertPark, Jong SungCaron, Ruben WalterFisher, Paul B.Hagan, Michael P.Grant, StevenDent, PaulAPOPTOSISCASPASEIONIZING RADIATIONMAP KINASEMAPKSURVIVALhttps://purl.org/becyt/ford/3.5https://purl.org/becyt/ford/3Recent studies have shown that inhibition of stress-induced signaling via the mitogen activated protein kinase (MAPK) pathway can potentiate the toxic effects of chemotherapeutic drugs and ionizing radiation. Because of these observations, we have further investigated the impact upon growth and survival of mammary (MDA-MB-231, MCF7, T47D), prostate (DU145, LNCaP, PC3) and squamous (A431) carcinoma cells following irradiation and combined long-term exposure to MEK1/2 inhibitors. Exposure of carcinoma cells to ionizing radiation resulted in MAPK pathway activation initially (0-4h) and modestly enhanced MAPK activity at later times (24h-96h). Inhibition of radiation-induced MAPK activation using MEK1/2 inhibitors potentiated radiation-induced apoptosis in two waves, at 21-30h and 96-144h after exposure. The potentiation of apoptosis was not observed in MCF7, LNCaP, or PC3 cells. At 24h, the potentiation of apoptosis was independent of radiation dose whereas at 108h, apoptosis correlated with increasing dose. Removal of the MEK1/2 inhibitor either 6h or 12h after exposure abolished the potentiation of apoptosis at 24h. At this time, the potentiation of apoptosis correlated with cleavage of pro-caspases -8, -9 and -3, and with release of cytochrome c into the cytosol. Inhibition of caspase function using a pan-caspase inhibitor ZVAD blocked the enhanced apoptotic response at 24h. Selective inhibition of caspase 9 with LEHD or caspase 8 with IETD partially blunted the apoptotic response in MDA-MB-231, DU145 and A431 cells, whereas inhibition of both caspases reduced the response by >90%. Removal of the MEK1/2 inhibitor either 24h or 48h after exposure abolished the potentiation of apoptosis at 108h. Incubation of cells with ZVAD for 108h also abolished the potentiation of apoptosis. In general agreement with the finding that prolonged inhibition of MEK1/2 was required to enhance radiation-induced apoptosis at 108h, omission of MEK1/2 inhibitor from the culture media during assessment of clonogenic survival resulted in either little or no significant alteration in radiosensitivity. Collectively, our data show that combined exposure to radiation and MEK1/2 inhibitors can reduce survival in some, but not all, tumor cell types. Prolonged blunting of MAPK pathway function following radiation exposure is required for MEK1/2 inhibitors to have any effect on carcinoma cell radiosensitivity.Fil: Qiao, Liang. Virginia Commonwealth University; Estados UnidosFil: Yacoub, Adly. Virginia Commonwealth University; Estados UnidosFil: McKinstry, Robert. Virginia Commonwealth University; Estados UnidosFil: Park, Jong Sung. Virginia Commonwealth University; Estados UnidosFil: Caron, Ruben Walter. Virginia Commonwealth University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Fisher, Paul B.. Columbia University. College of Physicians and Surgeons; Estados UnidosFil: Hagan, Michael P.. Virginia Commonwealth University; Estados UnidosFil: Grant, Steven. Virginia Commonwealth University; Estados UnidosFil: Dent, Paul. Virginia Commonwealth University; Estados UnidosTaylor & Francis2002-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/128235Qiao, Liang; Yacoub, Adly; McKinstry, Robert; Park, Jong Sung; Caron, Ruben Walter; et al.; Pharmocologic inhibitors of the mitogen activated protein kinase cascade have the potential to interact with ionizing radiation exposure to induce cell death in carcinoma cells by multiple mechanisms; Taylor & Francis; Cancer Biology & Therapy; 1; 2; 12-2002; 168-1761538-40471555-8576CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4161/cbt.64info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.4161/cbt.64info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:13:54Zoai:ri.conicet.gov.ar:11336/128235instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:13:54.747CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Pharmocologic inhibitors of the mitogen activated protein kinase cascade have the potential to interact with ionizing radiation exposure to induce cell death in carcinoma cells by multiple mechanisms |
title |
Pharmocologic inhibitors of the mitogen activated protein kinase cascade have the potential to interact with ionizing radiation exposure to induce cell death in carcinoma cells by multiple mechanisms |
spellingShingle |
Pharmocologic inhibitors of the mitogen activated protein kinase cascade have the potential to interact with ionizing radiation exposure to induce cell death in carcinoma cells by multiple mechanisms Qiao, Liang APOPTOSIS CASPASE IONIZING RADIATION MAP KINASE MAPK SURVIVAL |
title_short |
Pharmocologic inhibitors of the mitogen activated protein kinase cascade have the potential to interact with ionizing radiation exposure to induce cell death in carcinoma cells by multiple mechanisms |
title_full |
Pharmocologic inhibitors of the mitogen activated protein kinase cascade have the potential to interact with ionizing radiation exposure to induce cell death in carcinoma cells by multiple mechanisms |
title_fullStr |
Pharmocologic inhibitors of the mitogen activated protein kinase cascade have the potential to interact with ionizing radiation exposure to induce cell death in carcinoma cells by multiple mechanisms |
title_full_unstemmed |
Pharmocologic inhibitors of the mitogen activated protein kinase cascade have the potential to interact with ionizing radiation exposure to induce cell death in carcinoma cells by multiple mechanisms |
title_sort |
Pharmocologic inhibitors of the mitogen activated protein kinase cascade have the potential to interact with ionizing radiation exposure to induce cell death in carcinoma cells by multiple mechanisms |
dc.creator.none.fl_str_mv |
Qiao, Liang Yacoub, Adly McKinstry, Robert Park, Jong Sung Caron, Ruben Walter Fisher, Paul B. Hagan, Michael P. Grant, Steven Dent, Paul |
author |
Qiao, Liang |
author_facet |
Qiao, Liang Yacoub, Adly McKinstry, Robert Park, Jong Sung Caron, Ruben Walter Fisher, Paul B. Hagan, Michael P. Grant, Steven Dent, Paul |
author_role |
author |
author2 |
Yacoub, Adly McKinstry, Robert Park, Jong Sung Caron, Ruben Walter Fisher, Paul B. Hagan, Michael P. Grant, Steven Dent, Paul |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
APOPTOSIS CASPASE IONIZING RADIATION MAP KINASE MAPK SURVIVAL |
topic |
APOPTOSIS CASPASE IONIZING RADIATION MAP KINASE MAPK SURVIVAL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.5 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Recent studies have shown that inhibition of stress-induced signaling via the mitogen activated protein kinase (MAPK) pathway can potentiate the toxic effects of chemotherapeutic drugs and ionizing radiation. Because of these observations, we have further investigated the impact upon growth and survival of mammary (MDA-MB-231, MCF7, T47D), prostate (DU145, LNCaP, PC3) and squamous (A431) carcinoma cells following irradiation and combined long-term exposure to MEK1/2 inhibitors. Exposure of carcinoma cells to ionizing radiation resulted in MAPK pathway activation initially (0-4h) and modestly enhanced MAPK activity at later times (24h-96h). Inhibition of radiation-induced MAPK activation using MEK1/2 inhibitors potentiated radiation-induced apoptosis in two waves, at 21-30h and 96-144h after exposure. The potentiation of apoptosis was not observed in MCF7, LNCaP, or PC3 cells. At 24h, the potentiation of apoptosis was independent of radiation dose whereas at 108h, apoptosis correlated with increasing dose. Removal of the MEK1/2 inhibitor either 6h or 12h after exposure abolished the potentiation of apoptosis at 24h. At this time, the potentiation of apoptosis correlated with cleavage of pro-caspases -8, -9 and -3, and with release of cytochrome c into the cytosol. Inhibition of caspase function using a pan-caspase inhibitor ZVAD blocked the enhanced apoptotic response at 24h. Selective inhibition of caspase 9 with LEHD or caspase 8 with IETD partially blunted the apoptotic response in MDA-MB-231, DU145 and A431 cells, whereas inhibition of both caspases reduced the response by >90%. Removal of the MEK1/2 inhibitor either 24h or 48h after exposure abolished the potentiation of apoptosis at 108h. Incubation of cells with ZVAD for 108h also abolished the potentiation of apoptosis. In general agreement with the finding that prolonged inhibition of MEK1/2 was required to enhance radiation-induced apoptosis at 108h, omission of MEK1/2 inhibitor from the culture media during assessment of clonogenic survival resulted in either little or no significant alteration in radiosensitivity. Collectively, our data show that combined exposure to radiation and MEK1/2 inhibitors can reduce survival in some, but not all, tumor cell types. Prolonged blunting of MAPK pathway function following radiation exposure is required for MEK1/2 inhibitors to have any effect on carcinoma cell radiosensitivity. Fil: Qiao, Liang. Virginia Commonwealth University; Estados Unidos Fil: Yacoub, Adly. Virginia Commonwealth University; Estados Unidos Fil: McKinstry, Robert. Virginia Commonwealth University; Estados Unidos Fil: Park, Jong Sung. Virginia Commonwealth University; Estados Unidos Fil: Caron, Ruben Walter. Virginia Commonwealth University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; Argentina Fil: Fisher, Paul B.. Columbia University. College of Physicians and Surgeons; Estados Unidos Fil: Hagan, Michael P.. Virginia Commonwealth University; Estados Unidos Fil: Grant, Steven. Virginia Commonwealth University; Estados Unidos Fil: Dent, Paul. Virginia Commonwealth University; Estados Unidos |
description |
Recent studies have shown that inhibition of stress-induced signaling via the mitogen activated protein kinase (MAPK) pathway can potentiate the toxic effects of chemotherapeutic drugs and ionizing radiation. Because of these observations, we have further investigated the impact upon growth and survival of mammary (MDA-MB-231, MCF7, T47D), prostate (DU145, LNCaP, PC3) and squamous (A431) carcinoma cells following irradiation and combined long-term exposure to MEK1/2 inhibitors. Exposure of carcinoma cells to ionizing radiation resulted in MAPK pathway activation initially (0-4h) and modestly enhanced MAPK activity at later times (24h-96h). Inhibition of radiation-induced MAPK activation using MEK1/2 inhibitors potentiated radiation-induced apoptosis in two waves, at 21-30h and 96-144h after exposure. The potentiation of apoptosis was not observed in MCF7, LNCaP, or PC3 cells. At 24h, the potentiation of apoptosis was independent of radiation dose whereas at 108h, apoptosis correlated with increasing dose. Removal of the MEK1/2 inhibitor either 6h or 12h after exposure abolished the potentiation of apoptosis at 24h. At this time, the potentiation of apoptosis correlated with cleavage of pro-caspases -8, -9 and -3, and with release of cytochrome c into the cytosol. Inhibition of caspase function using a pan-caspase inhibitor ZVAD blocked the enhanced apoptotic response at 24h. Selective inhibition of caspase 9 with LEHD or caspase 8 with IETD partially blunted the apoptotic response in MDA-MB-231, DU145 and A431 cells, whereas inhibition of both caspases reduced the response by >90%. Removal of the MEK1/2 inhibitor either 24h or 48h after exposure abolished the potentiation of apoptosis at 108h. Incubation of cells with ZVAD for 108h also abolished the potentiation of apoptosis. In general agreement with the finding that prolonged inhibition of MEK1/2 was required to enhance radiation-induced apoptosis at 108h, omission of MEK1/2 inhibitor from the culture media during assessment of clonogenic survival resulted in either little or no significant alteration in radiosensitivity. Collectively, our data show that combined exposure to radiation and MEK1/2 inhibitors can reduce survival in some, but not all, tumor cell types. Prolonged blunting of MAPK pathway function following radiation exposure is required for MEK1/2 inhibitors to have any effect on carcinoma cell radiosensitivity. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/128235 Qiao, Liang; Yacoub, Adly; McKinstry, Robert; Park, Jong Sung; Caron, Ruben Walter; et al.; Pharmocologic inhibitors of the mitogen activated protein kinase cascade have the potential to interact with ionizing radiation exposure to induce cell death in carcinoma cells by multiple mechanisms; Taylor & Francis; Cancer Biology & Therapy; 1; 2; 12-2002; 168-176 1538-4047 1555-8576 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/128235 |
identifier_str_mv |
Qiao, Liang; Yacoub, Adly; McKinstry, Robert; Park, Jong Sung; Caron, Ruben Walter; et al.; Pharmocologic inhibitors of the mitogen activated protein kinase cascade have the potential to interact with ionizing radiation exposure to induce cell death in carcinoma cells by multiple mechanisms; Taylor & Francis; Cancer Biology & Therapy; 1; 2; 12-2002; 168-176 1538-4047 1555-8576 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.4161/cbt.64 info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.4161/cbt.64 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846781552692822016 |
score |
12.982451 |