Use of hyperspectral image data outperforms vegetation indices in prediction of maize yield
- Autores
- Aguate, Fernando Matías; Trachsel, Samuel; González Pérez, Lorena; Burgueño, Juan; Crossa, José; Balzarini, Monica Graciela; Gouache, David; Bogard, Matthieu; de los Campos, Gustavo
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Hyperspectral cameras can provide reflectance data at hundreds of wavelengths. This information can be used to derive vegetation indices (VIs) that are correlated with agronomic and physiological traits. However, the data generated by hyperspectral cameras are richer than what can be summarized in a VI. Therefore, in this study, we examined whether prediction equations using hyperspectral image data can lead to better predictive performance for grain yield than what can be achieved using VIs. For hyperspectral prediction equations, we considered three estimation methods: ordinary least squares, partial least squares (a dimension reduction method), and a Bayesian shrinkage and variable selection procedure. We also examined the benefits of combining reflectance data collected at different time points. Data were generated by CIMMYT in 11 maize (Zea mays L.) yield trials conducted in 2014 under heat and drought stress. Our results indicate that using data from 62 bands leads to higher prediction accuracy than what can be achieved using individual VIs. Overall, the shrinkage and variable selection method was the best-performing one. Among the models using data from a single time point, the one using reflectance collected at 28 d after flowering gave the highest prediction accuracy. Combining image data collected at multiple time points led to an increase in prediction accuracy compared with using single-time-point data.
Fil: Aguate, Fernando Matías. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Trachsel, Samuel. Centro Internacional de Mejoramiento de Maiz y Trigo; México
Fil: González Pérez, Lorena. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina. Sustainable Intensification Program; México
Fil: Burgueño, Juan. Centro Internacional de Mejoramiento de Maiz y Trigo; México
Fil: Crossa, José. Centro Internacional de Mejoramiento de Maiz y Trigo; México
Fil: Balzarini, Monica Graciela. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Gouache, David. Arvalis - Institut Du Vegetal; Francia
Fil: Bogard, Matthieu. Arvalis - Institut Du Vegetal; Francia
Fil: de los Campos, Gustavo. Michigan State University; Estados Unidos - Materia
-
PLS
NDVI - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/72524
Ver los metadatos del registro completo
id |
CONICETDig_43cd80b0c9b844ba8a92e1003fe3eaf6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/72524 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Use of hyperspectral image data outperforms vegetation indices in prediction of maize yieldAguate, Fernando MatíasTrachsel, SamuelGonzález Pérez, LorenaBurgueño, JuanCrossa, JoséBalzarini, Monica GracielaGouache, DavidBogard, Matthieude los Campos, GustavoPLSNDVIhttps://purl.org/becyt/ford/4.5https://purl.org/becyt/ford/4Hyperspectral cameras can provide reflectance data at hundreds of wavelengths. This information can be used to derive vegetation indices (VIs) that are correlated with agronomic and physiological traits. However, the data generated by hyperspectral cameras are richer than what can be summarized in a VI. Therefore, in this study, we examined whether prediction equations using hyperspectral image data can lead to better predictive performance for grain yield than what can be achieved using VIs. For hyperspectral prediction equations, we considered three estimation methods: ordinary least squares, partial least squares (a dimension reduction method), and a Bayesian shrinkage and variable selection procedure. We also examined the benefits of combining reflectance data collected at different time points. Data were generated by CIMMYT in 11 maize (Zea mays L.) yield trials conducted in 2014 under heat and drought stress. Our results indicate that using data from 62 bands leads to higher prediction accuracy than what can be achieved using individual VIs. Overall, the shrinkage and variable selection method was the best-performing one. Among the models using data from a single time point, the one using reflectance collected at 28 d after flowering gave the highest prediction accuracy. Combining image data collected at multiple time points led to an increase in prediction accuracy compared with using single-time-point data.Fil: Aguate, Fernando Matías. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Trachsel, Samuel. Centro Internacional de Mejoramiento de Maiz y Trigo; MéxicoFil: González Pérez, Lorena. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina. Sustainable Intensification Program; MéxicoFil: Burgueño, Juan. Centro Internacional de Mejoramiento de Maiz y Trigo; MéxicoFil: Crossa, José. Centro Internacional de Mejoramiento de Maiz y Trigo; MéxicoFil: Balzarini, Monica Graciela. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Gouache, David. Arvalis - Institut Du Vegetal; FranciaFil: Bogard, Matthieu. Arvalis - Institut Du Vegetal; FranciaFil: de los Campos, Gustavo. Michigan State University; Estados UnidosCrop Science Society of America2017-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/72524Aguate, Fernando Matías; Trachsel, Samuel; González Pérez, Lorena; Burgueño, Juan; Crossa, José; et al.; Use of hyperspectral image data outperforms vegetation indices in prediction of maize yield; Crop Science Society of America; Crop Science; 57; 5; 9-2017; 2517-25240011-183XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://dl.sciencesocieties.org/publications/cs/abstracts/0/0/cropsci2017.01.0007info:eu-repo/semantics/altIdentifier/doi/10.2135/cropsci2017.01.0007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:02Zoai:ri.conicet.gov.ar:11336/72524instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:02.966CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Use of hyperspectral image data outperforms vegetation indices in prediction of maize yield |
title |
Use of hyperspectral image data outperforms vegetation indices in prediction of maize yield |
spellingShingle |
Use of hyperspectral image data outperforms vegetation indices in prediction of maize yield Aguate, Fernando Matías PLS NDVI |
title_short |
Use of hyperspectral image data outperforms vegetation indices in prediction of maize yield |
title_full |
Use of hyperspectral image data outperforms vegetation indices in prediction of maize yield |
title_fullStr |
Use of hyperspectral image data outperforms vegetation indices in prediction of maize yield |
title_full_unstemmed |
Use of hyperspectral image data outperforms vegetation indices in prediction of maize yield |
title_sort |
Use of hyperspectral image data outperforms vegetation indices in prediction of maize yield |
dc.creator.none.fl_str_mv |
Aguate, Fernando Matías Trachsel, Samuel González Pérez, Lorena Burgueño, Juan Crossa, José Balzarini, Monica Graciela Gouache, David Bogard, Matthieu de los Campos, Gustavo |
author |
Aguate, Fernando Matías |
author_facet |
Aguate, Fernando Matías Trachsel, Samuel González Pérez, Lorena Burgueño, Juan Crossa, José Balzarini, Monica Graciela Gouache, David Bogard, Matthieu de los Campos, Gustavo |
author_role |
author |
author2 |
Trachsel, Samuel González Pérez, Lorena Burgueño, Juan Crossa, José Balzarini, Monica Graciela Gouache, David Bogard, Matthieu de los Campos, Gustavo |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
PLS NDVI |
topic |
PLS NDVI |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.5 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
Hyperspectral cameras can provide reflectance data at hundreds of wavelengths. This information can be used to derive vegetation indices (VIs) that are correlated with agronomic and physiological traits. However, the data generated by hyperspectral cameras are richer than what can be summarized in a VI. Therefore, in this study, we examined whether prediction equations using hyperspectral image data can lead to better predictive performance for grain yield than what can be achieved using VIs. For hyperspectral prediction equations, we considered three estimation methods: ordinary least squares, partial least squares (a dimension reduction method), and a Bayesian shrinkage and variable selection procedure. We also examined the benefits of combining reflectance data collected at different time points. Data were generated by CIMMYT in 11 maize (Zea mays L.) yield trials conducted in 2014 under heat and drought stress. Our results indicate that using data from 62 bands leads to higher prediction accuracy than what can be achieved using individual VIs. Overall, the shrinkage and variable selection method was the best-performing one. Among the models using data from a single time point, the one using reflectance collected at 28 d after flowering gave the highest prediction accuracy. Combining image data collected at multiple time points led to an increase in prediction accuracy compared with using single-time-point data. Fil: Aguate, Fernando Matías. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina Fil: Trachsel, Samuel. Centro Internacional de Mejoramiento de Maiz y Trigo; México Fil: González Pérez, Lorena. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina. Sustainable Intensification Program; México Fil: Burgueño, Juan. Centro Internacional de Mejoramiento de Maiz y Trigo; México Fil: Crossa, José. Centro Internacional de Mejoramiento de Maiz y Trigo; México Fil: Balzarini, Monica Graciela. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina Fil: Gouache, David. Arvalis - Institut Du Vegetal; Francia Fil: Bogard, Matthieu. Arvalis - Institut Du Vegetal; Francia Fil: de los Campos, Gustavo. Michigan State University; Estados Unidos |
description |
Hyperspectral cameras can provide reflectance data at hundreds of wavelengths. This information can be used to derive vegetation indices (VIs) that are correlated with agronomic and physiological traits. However, the data generated by hyperspectral cameras are richer than what can be summarized in a VI. Therefore, in this study, we examined whether prediction equations using hyperspectral image data can lead to better predictive performance for grain yield than what can be achieved using VIs. For hyperspectral prediction equations, we considered three estimation methods: ordinary least squares, partial least squares (a dimension reduction method), and a Bayesian shrinkage and variable selection procedure. We also examined the benefits of combining reflectance data collected at different time points. Data were generated by CIMMYT in 11 maize (Zea mays L.) yield trials conducted in 2014 under heat and drought stress. Our results indicate that using data from 62 bands leads to higher prediction accuracy than what can be achieved using individual VIs. Overall, the shrinkage and variable selection method was the best-performing one. Among the models using data from a single time point, the one using reflectance collected at 28 d after flowering gave the highest prediction accuracy. Combining image data collected at multiple time points led to an increase in prediction accuracy compared with using single-time-point data. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/72524 Aguate, Fernando Matías; Trachsel, Samuel; González Pérez, Lorena; Burgueño, Juan; Crossa, José; et al.; Use of hyperspectral image data outperforms vegetation indices in prediction of maize yield; Crop Science Society of America; Crop Science; 57; 5; 9-2017; 2517-2524 0011-183X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/72524 |
identifier_str_mv |
Aguate, Fernando Matías; Trachsel, Samuel; González Pérez, Lorena; Burgueño, Juan; Crossa, José; et al.; Use of hyperspectral image data outperforms vegetation indices in prediction of maize yield; Crop Science Society of America; Crop Science; 57; 5; 9-2017; 2517-2524 0011-183X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://dl.sciencesocieties.org/publications/cs/abstracts/0/0/cropsci2017.01.0007 info:eu-repo/semantics/altIdentifier/doi/10.2135/cropsci2017.01.0007 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Crop Science Society of America |
publisher.none.fl_str_mv |
Crop Science Society of America |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269132271124480 |
score |
13.13397 |