Caging and excited state emission of ICN trapped in cryogenic matrices: Experiment and theory

Autores
Helbing, J.; Chergui, M.; Fernández Alberti, Sebastián; Echave, Julián; Halberstadt, N.; Beswick, J. A.
Año de publicación
2000
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We discuss the cage induced stabilisation of fragments in excited electronic states following the UV-dissociation of ICN in cryogenic matrices. Emission spectra recorded upon A-band excitation of ICN in solid neon, argon and krypton exhibit a long progression of broad bands due to a weakly bound electronically excited state, presumably one of the low-lying triplet states 3Π1 or 3Π2 of ICN. A lifetime analysis favours the 3Π2 state. Molecular dynamics with quantum transitions (MDQT) simulations were conducted on six coupled electronic potential energy surfaces in a matrix of 498 argon atoms. Although a complete potential energy surface for the 3Π2 state is not available, it is known to be very similar to the 3Π1 one. Therefore only the 6 available [3Π1 (A', A''), 3Π(o)+, 1Π1 (A', A''), X 1Σ+] ab initio electronic potential energy surfaces were considered. The results predict a 2% probability of stabilisation in the shallow minimum of the triplet excited state. The molecule adopts a linear ICN configuration with a mean value of the I-CN distance far away from the absorption Franck-Condon region. The simulations also deliver insight into the mechanism of cage-induced population trapping in excited state surfaces, which is not accessible in the gas phase.
Fil: Helbing, J.. Universite de Lausanne; Suiza
Fil: Chergui, M.. Universite de Lausanne; Suiza
Fil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes. Centro de Estudios e Investigación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Echave, Julián. Universidad Nacional de Quilmes. Centro de Estudios e Investigación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Halberstadt, N.. Université Paul Sabatier; Francia
Fil: Beswick, J. A.. Université Paul Sabatier; Francia
Materia
Photodynamics
Caging
Condensed Phase
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/71719

id CONICETDig_43691ab5bbcb321e0a546e4910892dc9
oai_identifier_str oai:ri.conicet.gov.ar:11336/71719
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Caging and excited state emission of ICN trapped in cryogenic matrices: Experiment and theoryHelbing, J.Chergui, M.Fernández Alberti, SebastiánEchave, JuliánHalberstadt, N.Beswick, J. A.PhotodynamicsCagingCondensed Phasehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1We discuss the cage induced stabilisation of fragments in excited electronic states following the UV-dissociation of ICN in cryogenic matrices. Emission spectra recorded upon A-band excitation of ICN in solid neon, argon and krypton exhibit a long progression of broad bands due to a weakly bound electronically excited state, presumably one of the low-lying triplet states 3Π1 or 3Π2 of ICN. A lifetime analysis favours the 3Π2 state. Molecular dynamics with quantum transitions (MDQT) simulations were conducted on six coupled electronic potential energy surfaces in a matrix of 498 argon atoms. Although a complete potential energy surface for the 3Π2 state is not available, it is known to be very similar to the 3Π1 one. Therefore only the 6 available [3Π1 (A', A''), 3Π(o)+, 1Π1 (A', A''), X 1Σ+] ab initio electronic potential energy surfaces were considered. The results predict a 2% probability of stabilisation in the shallow minimum of the triplet excited state. The molecule adopts a linear ICN configuration with a mean value of the I-CN distance far away from the absorption Franck-Condon region. The simulations also deliver insight into the mechanism of cage-induced population trapping in excited state surfaces, which is not accessible in the gas phase.Fil: Helbing, J.. Universite de Lausanne; SuizaFil: Chergui, M.. Universite de Lausanne; SuizaFil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes. Centro de Estudios e Investigación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Echave, Julián. Universidad Nacional de Quilmes. Centro de Estudios e Investigación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Halberstadt, N.. Université Paul Sabatier; FranciaFil: Beswick, J. A.. Université Paul Sabatier; FranciaRoyal Society of Chemistry2000-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/71719Helbing, J.; Chergui, M.; Fernández Alberti, Sebastián; Echave, Julián; Halberstadt, N.; et al.; Caging and excited state emission of ICN trapped in cryogenic matrices: Experiment and theory; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 2; 18; 9-2000; 4131-41381463-9076CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1039/b003181jinfo:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/Content/ArticleLanding/2000/CP/b003181jinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:00:28Zoai:ri.conicet.gov.ar:11336/71719instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:00:28.323CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Caging and excited state emission of ICN trapped in cryogenic matrices: Experiment and theory
title Caging and excited state emission of ICN trapped in cryogenic matrices: Experiment and theory
spellingShingle Caging and excited state emission of ICN trapped in cryogenic matrices: Experiment and theory
Helbing, J.
Photodynamics
Caging
Condensed Phase
title_short Caging and excited state emission of ICN trapped in cryogenic matrices: Experiment and theory
title_full Caging and excited state emission of ICN trapped in cryogenic matrices: Experiment and theory
title_fullStr Caging and excited state emission of ICN trapped in cryogenic matrices: Experiment and theory
title_full_unstemmed Caging and excited state emission of ICN trapped in cryogenic matrices: Experiment and theory
title_sort Caging and excited state emission of ICN trapped in cryogenic matrices: Experiment and theory
dc.creator.none.fl_str_mv Helbing, J.
Chergui, M.
Fernández Alberti, Sebastián
Echave, Julián
Halberstadt, N.
Beswick, J. A.
author Helbing, J.
author_facet Helbing, J.
Chergui, M.
Fernández Alberti, Sebastián
Echave, Julián
Halberstadt, N.
Beswick, J. A.
author_role author
author2 Chergui, M.
Fernández Alberti, Sebastián
Echave, Julián
Halberstadt, N.
Beswick, J. A.
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Photodynamics
Caging
Condensed Phase
topic Photodynamics
Caging
Condensed Phase
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We discuss the cage induced stabilisation of fragments in excited electronic states following the UV-dissociation of ICN in cryogenic matrices. Emission spectra recorded upon A-band excitation of ICN in solid neon, argon and krypton exhibit a long progression of broad bands due to a weakly bound electronically excited state, presumably one of the low-lying triplet states 3Π1 or 3Π2 of ICN. A lifetime analysis favours the 3Π2 state. Molecular dynamics with quantum transitions (MDQT) simulations were conducted on six coupled electronic potential energy surfaces in a matrix of 498 argon atoms. Although a complete potential energy surface for the 3Π2 state is not available, it is known to be very similar to the 3Π1 one. Therefore only the 6 available [3Π1 (A', A''), 3Π(o)+, 1Π1 (A', A''), X 1Σ+] ab initio electronic potential energy surfaces were considered. The results predict a 2% probability of stabilisation in the shallow minimum of the triplet excited state. The molecule adopts a linear ICN configuration with a mean value of the I-CN distance far away from the absorption Franck-Condon region. The simulations also deliver insight into the mechanism of cage-induced population trapping in excited state surfaces, which is not accessible in the gas phase.
Fil: Helbing, J.. Universite de Lausanne; Suiza
Fil: Chergui, M.. Universite de Lausanne; Suiza
Fil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes. Centro de Estudios e Investigación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Echave, Julián. Universidad Nacional de Quilmes. Centro de Estudios e Investigación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Halberstadt, N.. Université Paul Sabatier; Francia
Fil: Beswick, J. A.. Université Paul Sabatier; Francia
description We discuss the cage induced stabilisation of fragments in excited electronic states following the UV-dissociation of ICN in cryogenic matrices. Emission spectra recorded upon A-band excitation of ICN in solid neon, argon and krypton exhibit a long progression of broad bands due to a weakly bound electronically excited state, presumably one of the low-lying triplet states 3Π1 or 3Π2 of ICN. A lifetime analysis favours the 3Π2 state. Molecular dynamics with quantum transitions (MDQT) simulations were conducted on six coupled electronic potential energy surfaces in a matrix of 498 argon atoms. Although a complete potential energy surface for the 3Π2 state is not available, it is known to be very similar to the 3Π1 one. Therefore only the 6 available [3Π1 (A', A''), 3Π(o)+, 1Π1 (A', A''), X 1Σ+] ab initio electronic potential energy surfaces were considered. The results predict a 2% probability of stabilisation in the shallow minimum of the triplet excited state. The molecule adopts a linear ICN configuration with a mean value of the I-CN distance far away from the absorption Franck-Condon region. The simulations also deliver insight into the mechanism of cage-induced population trapping in excited state surfaces, which is not accessible in the gas phase.
publishDate 2000
dc.date.none.fl_str_mv 2000-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/71719
Helbing, J.; Chergui, M.; Fernández Alberti, Sebastián; Echave, Julián; Halberstadt, N.; et al.; Caging and excited state emission of ICN trapped in cryogenic matrices: Experiment and theory; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 2; 18; 9-2000; 4131-4138
1463-9076
CONICET Digital
CONICET
url http://hdl.handle.net/11336/71719
identifier_str_mv Helbing, J.; Chergui, M.; Fernández Alberti, Sebastián; Echave, Julián; Halberstadt, N.; et al.; Caging and excited state emission of ICN trapped in cryogenic matrices: Experiment and theory; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 2; 18; 9-2000; 4131-4138
1463-9076
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1039/b003181j
info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/Content/ArticleLanding/2000/CP/b003181j
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782331584512000
score 12.982451