F-KPP Scaling limit and selection principle for a Brunet-Derrida type particle system
- Autores
- Groisman, Pablo Jose; Jonckheere, Matthieu Thimothy Samson; Martínez, Julián
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study a particle system with the following diffusion-branching-selection mechanism. Particles perform independent one dimensional Brownian motions and on top of that, at a constant rate, a pair of particles is chosen uniformly at random and both particles adopt the position of the rightmost one among them. We show that the cumulative distribution function of the empirical measure converges to a solution of the Fisher-Kolmogorov-Petrovskii-Piskunov (F-KPP) equation and use this fact to prove that the system selects the minimal macroscopic speed as the number of particles goes to infinity.
Fil: Groisman, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Jonckheere, Matthieu Thimothy Samson. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Martínez, Julián. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina - Materia
-
BRANCHING-SELECTION
PARTICLE SYSTEMS
VELOCITY
F-KPP EQUATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/117633
Ver los metadatos del registro completo
id |
CONICETDig_4319af6342666a32815d0237ec17ba16 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/117633 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
F-KPP Scaling limit and selection principle for a Brunet-Derrida type particle systemGroisman, Pablo JoseJonckheere, Matthieu Thimothy SamsonMartínez, JuliánBRANCHING-SELECTIONPARTICLE SYSTEMSVELOCITYF-KPP EQUATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study a particle system with the following diffusion-branching-selection mechanism. Particles perform independent one dimensional Brownian motions and on top of that, at a constant rate, a pair of particles is chosen uniformly at random and both particles adopt the position of the rightmost one among them. We show that the cumulative distribution function of the empirical measure converges to a solution of the Fisher-Kolmogorov-Petrovskii-Piskunov (F-KPP) equation and use this fact to prove that the system selects the minimal macroscopic speed as the number of particles goes to infinity.Fil: Groisman, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Jonckheere, Matthieu Thimothy Samson. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Martínez, Julián. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaCornell University2019-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/117633Groisman, Pablo Jose; Jonckheere, Matthieu Thimothy Samson; Martínez, Julián; F-KPP Scaling limit and selection principle for a Brunet-Derrida type particle system; Cornell University; arXiv; 3-2019; 1-172331-8422CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1904.00082info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:32:24Zoai:ri.conicet.gov.ar:11336/117633instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:32:24.7CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
F-KPP Scaling limit and selection principle for a Brunet-Derrida type particle system |
title |
F-KPP Scaling limit and selection principle for a Brunet-Derrida type particle system |
spellingShingle |
F-KPP Scaling limit and selection principle for a Brunet-Derrida type particle system Groisman, Pablo Jose BRANCHING-SELECTION PARTICLE SYSTEMS VELOCITY F-KPP EQUATION |
title_short |
F-KPP Scaling limit and selection principle for a Brunet-Derrida type particle system |
title_full |
F-KPP Scaling limit and selection principle for a Brunet-Derrida type particle system |
title_fullStr |
F-KPP Scaling limit and selection principle for a Brunet-Derrida type particle system |
title_full_unstemmed |
F-KPP Scaling limit and selection principle for a Brunet-Derrida type particle system |
title_sort |
F-KPP Scaling limit and selection principle for a Brunet-Derrida type particle system |
dc.creator.none.fl_str_mv |
Groisman, Pablo Jose Jonckheere, Matthieu Thimothy Samson Martínez, Julián |
author |
Groisman, Pablo Jose |
author_facet |
Groisman, Pablo Jose Jonckheere, Matthieu Thimothy Samson Martínez, Julián |
author_role |
author |
author2 |
Jonckheere, Matthieu Thimothy Samson Martínez, Julián |
author2_role |
author author |
dc.subject.none.fl_str_mv |
BRANCHING-SELECTION PARTICLE SYSTEMS VELOCITY F-KPP EQUATION |
topic |
BRANCHING-SELECTION PARTICLE SYSTEMS VELOCITY F-KPP EQUATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study a particle system with the following diffusion-branching-selection mechanism. Particles perform independent one dimensional Brownian motions and on top of that, at a constant rate, a pair of particles is chosen uniformly at random and both particles adopt the position of the rightmost one among them. We show that the cumulative distribution function of the empirical measure converges to a solution of the Fisher-Kolmogorov-Petrovskii-Piskunov (F-KPP) equation and use this fact to prove that the system selects the minimal macroscopic speed as the number of particles goes to infinity. Fil: Groisman, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Jonckheere, Matthieu Thimothy Samson. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Martínez, Julián. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina |
description |
We study a particle system with the following diffusion-branching-selection mechanism. Particles perform independent one dimensional Brownian motions and on top of that, at a constant rate, a pair of particles is chosen uniformly at random and both particles adopt the position of the rightmost one among them. We show that the cumulative distribution function of the empirical measure converges to a solution of the Fisher-Kolmogorov-Petrovskii-Piskunov (F-KPP) equation and use this fact to prove that the system selects the minimal macroscopic speed as the number of particles goes to infinity. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/117633 Groisman, Pablo Jose; Jonckheere, Matthieu Thimothy Samson; Martínez, Julián; F-KPP Scaling limit and selection principle for a Brunet-Derrida type particle system; Cornell University; arXiv; 3-2019; 1-17 2331-8422 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/117633 |
identifier_str_mv |
Groisman, Pablo Jose; Jonckheere, Matthieu Thimothy Samson; Martínez, Julián; F-KPP Scaling limit and selection principle for a Brunet-Derrida type particle system; Cornell University; arXiv; 3-2019; 1-17 2331-8422 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1904.00082 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cornell University |
publisher.none.fl_str_mv |
Cornell University |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844612988329263104 |
score |
13.070432 |