F-KPP Scaling limit and selection principle for a Brunet-Derrida type particle system

Autores
Groisman, Pablo Jose; Jonckheere, Matthieu Thimothy Samson; Martínez, Julián
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study a particle system with the following diffusion-branching-selection mechanism. Particles perform independent one dimensional Brownian motions and on top of that, at a constant rate, a pair of particles is chosen uniformly at random and both particles adopt the position of the rightmost one among them. We show that the cumulative distribution function of the empirical measure converges to a solution of the Fisher-Kolmogorov-Petrovskii-Piskunov (F-KPP) equation and use this fact to prove that the system selects the minimal macroscopic speed as the number of particles goes to infinity.
Fil: Groisman, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Jonckheere, Matthieu Thimothy Samson. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Martínez, Julián. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Materia
BRANCHING-SELECTION
PARTICLE SYSTEMS
VELOCITY
F-KPP EQUATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/117633

id CONICETDig_4319af6342666a32815d0237ec17ba16
oai_identifier_str oai:ri.conicet.gov.ar:11336/117633
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling F-KPP Scaling limit and selection principle for a Brunet-Derrida type particle systemGroisman, Pablo JoseJonckheere, Matthieu Thimothy SamsonMartínez, JuliánBRANCHING-SELECTIONPARTICLE SYSTEMSVELOCITYF-KPP EQUATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study a particle system with the following diffusion-branching-selection mechanism. Particles perform independent one dimensional Brownian motions and on top of that, at a constant rate, a pair of particles is chosen uniformly at random and both particles adopt the position of the rightmost one among them. We show that the cumulative distribution function of the empirical measure converges to a solution of the Fisher-Kolmogorov-Petrovskii-Piskunov (F-KPP) equation and use this fact to prove that the system selects the minimal macroscopic speed as the number of particles goes to infinity.Fil: Groisman, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Jonckheere, Matthieu Thimothy Samson. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Martínez, Julián. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaCornell University2019-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/117633Groisman, Pablo Jose; Jonckheere, Matthieu Thimothy Samson; Martínez, Julián; F-KPP Scaling limit and selection principle for a Brunet-Derrida type particle system; Cornell University; arXiv; 3-2019; 1-172331-8422CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1904.00082info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:32:24Zoai:ri.conicet.gov.ar:11336/117633instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:32:24.7CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv F-KPP Scaling limit and selection principle for a Brunet-Derrida type particle system
title F-KPP Scaling limit and selection principle for a Brunet-Derrida type particle system
spellingShingle F-KPP Scaling limit and selection principle for a Brunet-Derrida type particle system
Groisman, Pablo Jose
BRANCHING-SELECTION
PARTICLE SYSTEMS
VELOCITY
F-KPP EQUATION
title_short F-KPP Scaling limit and selection principle for a Brunet-Derrida type particle system
title_full F-KPP Scaling limit and selection principle for a Brunet-Derrida type particle system
title_fullStr F-KPP Scaling limit and selection principle for a Brunet-Derrida type particle system
title_full_unstemmed F-KPP Scaling limit and selection principle for a Brunet-Derrida type particle system
title_sort F-KPP Scaling limit and selection principle for a Brunet-Derrida type particle system
dc.creator.none.fl_str_mv Groisman, Pablo Jose
Jonckheere, Matthieu Thimothy Samson
Martínez, Julián
author Groisman, Pablo Jose
author_facet Groisman, Pablo Jose
Jonckheere, Matthieu Thimothy Samson
Martínez, Julián
author_role author
author2 Jonckheere, Matthieu Thimothy Samson
Martínez, Julián
author2_role author
author
dc.subject.none.fl_str_mv BRANCHING-SELECTION
PARTICLE SYSTEMS
VELOCITY
F-KPP EQUATION
topic BRANCHING-SELECTION
PARTICLE SYSTEMS
VELOCITY
F-KPP EQUATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study a particle system with the following diffusion-branching-selection mechanism. Particles perform independent one dimensional Brownian motions and on top of that, at a constant rate, a pair of particles is chosen uniformly at random and both particles adopt the position of the rightmost one among them. We show that the cumulative distribution function of the empirical measure converges to a solution of the Fisher-Kolmogorov-Petrovskii-Piskunov (F-KPP) equation and use this fact to prove that the system selects the minimal macroscopic speed as the number of particles goes to infinity.
Fil: Groisman, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Jonckheere, Matthieu Thimothy Samson. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Martínez, Julián. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
description We study a particle system with the following diffusion-branching-selection mechanism. Particles perform independent one dimensional Brownian motions and on top of that, at a constant rate, a pair of particles is chosen uniformly at random and both particles adopt the position of the rightmost one among them. We show that the cumulative distribution function of the empirical measure converges to a solution of the Fisher-Kolmogorov-Petrovskii-Piskunov (F-KPP) equation and use this fact to prove that the system selects the minimal macroscopic speed as the number of particles goes to infinity.
publishDate 2019
dc.date.none.fl_str_mv 2019-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/117633
Groisman, Pablo Jose; Jonckheere, Matthieu Thimothy Samson; Martínez, Julián; F-KPP Scaling limit and selection principle for a Brunet-Derrida type particle system; Cornell University; arXiv; 3-2019; 1-17
2331-8422
CONICET Digital
CONICET
url http://hdl.handle.net/11336/117633
identifier_str_mv Groisman, Pablo Jose; Jonckheere, Matthieu Thimothy Samson; Martínez, Julián; F-KPP Scaling limit and selection principle for a Brunet-Derrida type particle system; Cornell University; arXiv; 3-2019; 1-17
2331-8422
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1904.00082
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Cornell University
publisher.none.fl_str_mv Cornell University
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844612988329263104
score 13.070432