Scaling range automated selection for wavelet leader multifractal analysis
- Autores
- Leonarduzzi, Roberto Fabio; Torres, Maria Eugenia; Abry, Patrice
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Scale invariance and multifractal analysis constitute paradigms nowadays widely used for real-world data characterization. In essence, they amount to assuming power law behaviors of well-chosen multiresolution quantities as functions of the analysis scale. The exponents of these power laws, the scaling exponents, are then measured and involved in classical signal processing tasks. Yet, the practical estimation of such exponents implies the selection of a range of scales where the power law behaviors hold, a difficult task with yet crucial impact on performance. In the present contribution, a nonparametric bootstrap based procedure is devised to achieve scaling range automated selection. It is shown to be effective and relevant in practice. Its performance, benefits and computational costs are assessed by means of Monte Carlo simulations. It is applied to synthetic multifractal processes and shown to yield robust and accurate estimation of multifractal parameters, despite various difficulties such as noise corruption or inter-subject variability. Finally, its potential is illustrated at work for the analysis of adult heart rate variability on a large database.
Fil: Leonarduzzi, Roberto Fabio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos; Argentina
Fil: Torres, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos; Argentina
Fil: Abry, Patrice. Centre National de la Recherche Scientifique; Francia - Materia
-
AUTOMATED SCALING RANGE SELECTION
BOOTSTRAP
MULTIFRACTAL ANALYSIS
WAVELET LEADERS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/85412
Ver los metadatos del registro completo
id |
CONICETDig_ee5579e30a06b51920107c0a7f795793 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/85412 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Scaling range automated selection for wavelet leader multifractal analysisLeonarduzzi, Roberto FabioTorres, Maria EugeniaAbry, PatriceAUTOMATED SCALING RANGE SELECTIONBOOTSTRAPMULTIFRACTAL ANALYSISWAVELET LEADERShttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Scale invariance and multifractal analysis constitute paradigms nowadays widely used for real-world data characterization. In essence, they amount to assuming power law behaviors of well-chosen multiresolution quantities as functions of the analysis scale. The exponents of these power laws, the scaling exponents, are then measured and involved in classical signal processing tasks. Yet, the practical estimation of such exponents implies the selection of a range of scales where the power law behaviors hold, a difficult task with yet crucial impact on performance. In the present contribution, a nonparametric bootstrap based procedure is devised to achieve scaling range automated selection. It is shown to be effective and relevant in practice. Its performance, benefits and computational costs are assessed by means of Monte Carlo simulations. It is applied to synthetic multifractal processes and shown to yield robust and accurate estimation of multifractal parameters, despite various difficulties such as noise corruption or inter-subject variability. Finally, its potential is illustrated at work for the analysis of adult heart rate variability on a large database.Fil: Leonarduzzi, Roberto Fabio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos; ArgentinaFil: Torres, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos; ArgentinaFil: Abry, Patrice. Centre National de la Recherche Scientifique; FranciaElsevier Science2014-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/85412Leonarduzzi, Roberto Fabio; Torres, Maria Eugenia; Abry, Patrice; Scaling range automated selection for wavelet leader multifractal analysis; Elsevier Science; Signal Processing; 105; 12-2014; 243-2570165-1684CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0165168414002680info:eu-repo/semantics/altIdentifier/doi/10.1016/j.sigpro.2014.06.002info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:03Zoai:ri.conicet.gov.ar:11336/85412instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:04.138CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Scaling range automated selection for wavelet leader multifractal analysis |
title |
Scaling range automated selection for wavelet leader multifractal analysis |
spellingShingle |
Scaling range automated selection for wavelet leader multifractal analysis Leonarduzzi, Roberto Fabio AUTOMATED SCALING RANGE SELECTION BOOTSTRAP MULTIFRACTAL ANALYSIS WAVELET LEADERS |
title_short |
Scaling range automated selection for wavelet leader multifractal analysis |
title_full |
Scaling range automated selection for wavelet leader multifractal analysis |
title_fullStr |
Scaling range automated selection for wavelet leader multifractal analysis |
title_full_unstemmed |
Scaling range automated selection for wavelet leader multifractal analysis |
title_sort |
Scaling range automated selection for wavelet leader multifractal analysis |
dc.creator.none.fl_str_mv |
Leonarduzzi, Roberto Fabio Torres, Maria Eugenia Abry, Patrice |
author |
Leonarduzzi, Roberto Fabio |
author_facet |
Leonarduzzi, Roberto Fabio Torres, Maria Eugenia Abry, Patrice |
author_role |
author |
author2 |
Torres, Maria Eugenia Abry, Patrice |
author2_role |
author author |
dc.subject.none.fl_str_mv |
AUTOMATED SCALING RANGE SELECTION BOOTSTRAP MULTIFRACTAL ANALYSIS WAVELET LEADERS |
topic |
AUTOMATED SCALING RANGE SELECTION BOOTSTRAP MULTIFRACTAL ANALYSIS WAVELET LEADERS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Scale invariance and multifractal analysis constitute paradigms nowadays widely used for real-world data characterization. In essence, they amount to assuming power law behaviors of well-chosen multiresolution quantities as functions of the analysis scale. The exponents of these power laws, the scaling exponents, are then measured and involved in classical signal processing tasks. Yet, the practical estimation of such exponents implies the selection of a range of scales where the power law behaviors hold, a difficult task with yet crucial impact on performance. In the present contribution, a nonparametric bootstrap based procedure is devised to achieve scaling range automated selection. It is shown to be effective and relevant in practice. Its performance, benefits and computational costs are assessed by means of Monte Carlo simulations. It is applied to synthetic multifractal processes and shown to yield robust and accurate estimation of multifractal parameters, despite various difficulties such as noise corruption or inter-subject variability. Finally, its potential is illustrated at work for the analysis of adult heart rate variability on a large database. Fil: Leonarduzzi, Roberto Fabio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos; Argentina Fil: Torres, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos; Argentina Fil: Abry, Patrice. Centre National de la Recherche Scientifique; Francia |
description |
Scale invariance and multifractal analysis constitute paradigms nowadays widely used for real-world data characterization. In essence, they amount to assuming power law behaviors of well-chosen multiresolution quantities as functions of the analysis scale. The exponents of these power laws, the scaling exponents, are then measured and involved in classical signal processing tasks. Yet, the practical estimation of such exponents implies the selection of a range of scales where the power law behaviors hold, a difficult task with yet crucial impact on performance. In the present contribution, a nonparametric bootstrap based procedure is devised to achieve scaling range automated selection. It is shown to be effective and relevant in practice. Its performance, benefits and computational costs are assessed by means of Monte Carlo simulations. It is applied to synthetic multifractal processes and shown to yield robust and accurate estimation of multifractal parameters, despite various difficulties such as noise corruption or inter-subject variability. Finally, its potential is illustrated at work for the analysis of adult heart rate variability on a large database. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/85412 Leonarduzzi, Roberto Fabio; Torres, Maria Eugenia; Abry, Patrice; Scaling range automated selection for wavelet leader multifractal analysis; Elsevier Science; Signal Processing; 105; 12-2014; 243-257 0165-1684 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/85412 |
identifier_str_mv |
Leonarduzzi, Roberto Fabio; Torres, Maria Eugenia; Abry, Patrice; Scaling range automated selection for wavelet leader multifractal analysis; Elsevier Science; Signal Processing; 105; 12-2014; 243-257 0165-1684 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0165168414002680 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.sigpro.2014.06.002 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269070810939392 |
score |
13.13397 |