Multi-class classification based on quantum state discrimination
- Autores
- Giuntini, Roberto; Granda Arango, Andrés Camilo; Freytes, Hector; Holik, Federico Hernán; Sergioli, Giuseppe
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a general framework for the problem of multi-class classification using classification functions that can be interpreted as fuzzy sets. We specialize these functions in the domain of Quantum-inspired classifiers, which are based on quantum state discrimination techniques. In particular, we use unsharp observables (Positive Operator-Valued Measures) that are determined by the training set of a given dataset to construct these classification functions. We show that such classifiers can be tested on near-term quantum computers once these classification functions are “distilled” (on a classical platform) from the quantum encoding of a training dataset. We compare these experimental results with their theoretical counterparts and we pose some questions for future research.
Fil: Giuntini, Roberto. Università Degli Studi Di Cagliari.; Italia
Fil: Granda Arango, Andrés Camilo. Università Degli Studi Di Cagliari.; Italia
Fil: Freytes, Hector. Università Degli Studi Di Cagliari.; Italia
Fil: Holik, Federico Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Sergioli, Giuseppe. Università Degli Studi Di Cagliari.; Italia - Materia
-
POVM
PRETTY GOOD MEASUREMENTS
MULTICLASS CLASSIFICATION
QUANTUM INSPIRED MACHINE LEARNING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/233554
Ver los metadatos del registro completo
id |
CONICETDig_42034680f5c0e9a0779b46c2a64e70b3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/233554 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multi-class classification based on quantum state discriminationGiuntini, RobertoGranda Arango, Andrés CamiloFreytes, HectorHolik, Federico HernánSergioli, GiuseppePOVMPRETTY GOOD MEASUREMENTSMULTICLASS CLASSIFICATIONQUANTUM INSPIRED MACHINE LEARNINGhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present a general framework for the problem of multi-class classification using classification functions that can be interpreted as fuzzy sets. We specialize these functions in the domain of Quantum-inspired classifiers, which are based on quantum state discrimination techniques. In particular, we use unsharp observables (Positive Operator-Valued Measures) that are determined by the training set of a given dataset to construct these classification functions. We show that such classifiers can be tested on near-term quantum computers once these classification functions are “distilled” (on a classical platform) from the quantum encoding of a training dataset. We compare these experimental results with their theoretical counterparts and we pose some questions for future research.Fil: Giuntini, Roberto. Università Degli Studi Di Cagliari.; ItaliaFil: Granda Arango, Andrés Camilo. Università Degli Studi Di Cagliari.; ItaliaFil: Freytes, Hector. Università Degli Studi Di Cagliari.; ItaliaFil: Holik, Federico Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Sergioli, Giuseppe. Università Degli Studi Di Cagliari.; ItaliaElsevier2023-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/233554Giuntini, Roberto; Granda Arango, Andrés Camilo; Freytes, Hector; Holik, Federico Hernán; Sergioli, Giuseppe; Multi-class classification based on quantum state discrimination; Elsevier; International Journal On Fuzzy Sets And Systems; 467; 3-2023; 1-150165-0114CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0165011423001343info:eu-repo/semantics/altIdentifier/doi/10.1016/j.fss.2023.03.012info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:51:07Zoai:ri.conicet.gov.ar:11336/233554instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:51:07.446CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multi-class classification based on quantum state discrimination |
title |
Multi-class classification based on quantum state discrimination |
spellingShingle |
Multi-class classification based on quantum state discrimination Giuntini, Roberto POVM PRETTY GOOD MEASUREMENTS MULTICLASS CLASSIFICATION QUANTUM INSPIRED MACHINE LEARNING |
title_short |
Multi-class classification based on quantum state discrimination |
title_full |
Multi-class classification based on quantum state discrimination |
title_fullStr |
Multi-class classification based on quantum state discrimination |
title_full_unstemmed |
Multi-class classification based on quantum state discrimination |
title_sort |
Multi-class classification based on quantum state discrimination |
dc.creator.none.fl_str_mv |
Giuntini, Roberto Granda Arango, Andrés Camilo Freytes, Hector Holik, Federico Hernán Sergioli, Giuseppe |
author |
Giuntini, Roberto |
author_facet |
Giuntini, Roberto Granda Arango, Andrés Camilo Freytes, Hector Holik, Federico Hernán Sergioli, Giuseppe |
author_role |
author |
author2 |
Granda Arango, Andrés Camilo Freytes, Hector Holik, Federico Hernán Sergioli, Giuseppe |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
POVM PRETTY GOOD MEASUREMENTS MULTICLASS CLASSIFICATION QUANTUM INSPIRED MACHINE LEARNING |
topic |
POVM PRETTY GOOD MEASUREMENTS MULTICLASS CLASSIFICATION QUANTUM INSPIRED MACHINE LEARNING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present a general framework for the problem of multi-class classification using classification functions that can be interpreted as fuzzy sets. We specialize these functions in the domain of Quantum-inspired classifiers, which are based on quantum state discrimination techniques. In particular, we use unsharp observables (Positive Operator-Valued Measures) that are determined by the training set of a given dataset to construct these classification functions. We show that such classifiers can be tested on near-term quantum computers once these classification functions are “distilled” (on a classical platform) from the quantum encoding of a training dataset. We compare these experimental results with their theoretical counterparts and we pose some questions for future research. Fil: Giuntini, Roberto. Università Degli Studi Di Cagliari.; Italia Fil: Granda Arango, Andrés Camilo. Università Degli Studi Di Cagliari.; Italia Fil: Freytes, Hector. Università Degli Studi Di Cagliari.; Italia Fil: Holik, Federico Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: Sergioli, Giuseppe. Università Degli Studi Di Cagliari.; Italia |
description |
We present a general framework for the problem of multi-class classification using classification functions that can be interpreted as fuzzy sets. We specialize these functions in the domain of Quantum-inspired classifiers, which are based on quantum state discrimination techniques. In particular, we use unsharp observables (Positive Operator-Valued Measures) that are determined by the training set of a given dataset to construct these classification functions. We show that such classifiers can be tested on near-term quantum computers once these classification functions are “distilled” (on a classical platform) from the quantum encoding of a training dataset. We compare these experimental results with their theoretical counterparts and we pose some questions for future research. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/233554 Giuntini, Roberto; Granda Arango, Andrés Camilo; Freytes, Hector; Holik, Federico Hernán; Sergioli, Giuseppe; Multi-class classification based on quantum state discrimination; Elsevier; International Journal On Fuzzy Sets And Systems; 467; 3-2023; 1-15 0165-0114 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/233554 |
identifier_str_mv |
Giuntini, Roberto; Granda Arango, Andrés Camilo; Freytes, Hector; Holik, Federico Hernán; Sergioli, Giuseppe; Multi-class classification based on quantum state discrimination; Elsevier; International Journal On Fuzzy Sets And Systems; 467; 3-2023; 1-15 0165-0114 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0165011423001343 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.fss.2023.03.012 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613572496195584 |
score |
13.070432 |