Multi-class classification based on quantum state discrimination
- Autores
- Giuntini, Roberto; Granda Arango, Andrés Camilo; Freytes, Hector; Holik, Federico Hernán; Sergioli, Giuseppe
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a general framework for the problem of multi-class classification using classification functions that can be interpreted as fuzzy sets. We specialize these functions in the domain of Quantum-inspired classifiers, which are based on quantum state discrimination techniques. In particular, we use unsharp observables (Positive Operator-Valued Measures) that are determined by the training set of a given dataset to construct these classification functions. We show that such classifiers can be tested on near-term quantum computers once these classification functions are “distilled” (on a classical platform) from the quantum encoding of a training dataset. We compare these experimental results with their theoretical counterparts and we pose some questions for future research.
Fil: Giuntini, Roberto. Università Degli Studi Di Cagliari.; Italia
Fil: Granda Arango, Andrés Camilo. Università Degli Studi Di Cagliari.; Italia
Fil: Freytes, Hector. Università Degli Studi Di Cagliari.; Italia
Fil: Holik, Federico Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Sergioli, Giuseppe. Università Degli Studi Di Cagliari.; Italia - Materia
-
POVM
PRETTY GOOD MEASUREMENTS
MULTICLASS CLASSIFICATION
QUANTUM INSPIRED MACHINE LEARNING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/233554
Ver los metadatos del registro completo
| id |
CONICETDig_42034680f5c0e9a0779b46c2a64e70b3 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/233554 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Multi-class classification based on quantum state discriminationGiuntini, RobertoGranda Arango, Andrés CamiloFreytes, HectorHolik, Federico HernánSergioli, GiuseppePOVMPRETTY GOOD MEASUREMENTSMULTICLASS CLASSIFICATIONQUANTUM INSPIRED MACHINE LEARNINGhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present a general framework for the problem of multi-class classification using classification functions that can be interpreted as fuzzy sets. We specialize these functions in the domain of Quantum-inspired classifiers, which are based on quantum state discrimination techniques. In particular, we use unsharp observables (Positive Operator-Valued Measures) that are determined by the training set of a given dataset to construct these classification functions. We show that such classifiers can be tested on near-term quantum computers once these classification functions are “distilled” (on a classical platform) from the quantum encoding of a training dataset. We compare these experimental results with their theoretical counterparts and we pose some questions for future research.Fil: Giuntini, Roberto. Università Degli Studi Di Cagliari.; ItaliaFil: Granda Arango, Andrés Camilo. Università Degli Studi Di Cagliari.; ItaliaFil: Freytes, Hector. Università Degli Studi Di Cagliari.; ItaliaFil: Holik, Federico Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Sergioli, Giuseppe. Università Degli Studi Di Cagliari.; ItaliaElsevier2023-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/233554Giuntini, Roberto; Granda Arango, Andrés Camilo; Freytes, Hector; Holik, Federico Hernán; Sergioli, Giuseppe; Multi-class classification based on quantum state discrimination; Elsevier; International Journal On Fuzzy Sets And Systems; 467; 3-2023; 1-150165-0114CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0165011423001343info:eu-repo/semantics/altIdentifier/doi/10.1016/j.fss.2023.03.012info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:20:27Zoai:ri.conicet.gov.ar:11336/233554instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:20:27.64CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Multi-class classification based on quantum state discrimination |
| title |
Multi-class classification based on quantum state discrimination |
| spellingShingle |
Multi-class classification based on quantum state discrimination Giuntini, Roberto POVM PRETTY GOOD MEASUREMENTS MULTICLASS CLASSIFICATION QUANTUM INSPIRED MACHINE LEARNING |
| title_short |
Multi-class classification based on quantum state discrimination |
| title_full |
Multi-class classification based on quantum state discrimination |
| title_fullStr |
Multi-class classification based on quantum state discrimination |
| title_full_unstemmed |
Multi-class classification based on quantum state discrimination |
| title_sort |
Multi-class classification based on quantum state discrimination |
| dc.creator.none.fl_str_mv |
Giuntini, Roberto Granda Arango, Andrés Camilo Freytes, Hector Holik, Federico Hernán Sergioli, Giuseppe |
| author |
Giuntini, Roberto |
| author_facet |
Giuntini, Roberto Granda Arango, Andrés Camilo Freytes, Hector Holik, Federico Hernán Sergioli, Giuseppe |
| author_role |
author |
| author2 |
Granda Arango, Andrés Camilo Freytes, Hector Holik, Federico Hernán Sergioli, Giuseppe |
| author2_role |
author author author author |
| dc.subject.none.fl_str_mv |
POVM PRETTY GOOD MEASUREMENTS MULTICLASS CLASSIFICATION QUANTUM INSPIRED MACHINE LEARNING |
| topic |
POVM PRETTY GOOD MEASUREMENTS MULTICLASS CLASSIFICATION QUANTUM INSPIRED MACHINE LEARNING |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We present a general framework for the problem of multi-class classification using classification functions that can be interpreted as fuzzy sets. We specialize these functions in the domain of Quantum-inspired classifiers, which are based on quantum state discrimination techniques. In particular, we use unsharp observables (Positive Operator-Valued Measures) that are determined by the training set of a given dataset to construct these classification functions. We show that such classifiers can be tested on near-term quantum computers once these classification functions are “distilled” (on a classical platform) from the quantum encoding of a training dataset. We compare these experimental results with their theoretical counterparts and we pose some questions for future research. Fil: Giuntini, Roberto. Università Degli Studi Di Cagliari.; Italia Fil: Granda Arango, Andrés Camilo. Università Degli Studi Di Cagliari.; Italia Fil: Freytes, Hector. Università Degli Studi Di Cagliari.; Italia Fil: Holik, Federico Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: Sergioli, Giuseppe. Università Degli Studi Di Cagliari.; Italia |
| description |
We present a general framework for the problem of multi-class classification using classification functions that can be interpreted as fuzzy sets. We specialize these functions in the domain of Quantum-inspired classifiers, which are based on quantum state discrimination techniques. In particular, we use unsharp observables (Positive Operator-Valued Measures) that are determined by the training set of a given dataset to construct these classification functions. We show that such classifiers can be tested on near-term quantum computers once these classification functions are “distilled” (on a classical platform) from the quantum encoding of a training dataset. We compare these experimental results with their theoretical counterparts and we pose some questions for future research. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/233554 Giuntini, Roberto; Granda Arango, Andrés Camilo; Freytes, Hector; Holik, Federico Hernán; Sergioli, Giuseppe; Multi-class classification based on quantum state discrimination; Elsevier; International Journal On Fuzzy Sets And Systems; 467; 3-2023; 1-15 0165-0114 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/233554 |
| identifier_str_mv |
Giuntini, Roberto; Granda Arango, Andrés Camilo; Freytes, Hector; Holik, Federico Hernán; Sergioli, Giuseppe; Multi-class classification based on quantum state discrimination; Elsevier; International Journal On Fuzzy Sets And Systems; 467; 3-2023; 1-15 0165-0114 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0165011423001343 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.fss.2023.03.012 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier |
| publisher.none.fl_str_mv |
Elsevier |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781695544524800 |
| score |
12.982451 |