A New QSPR Study on Relative Sweetness
- Autores
- Rojas Villa, Cristian Xavier; Tripaldi, Piercosimo; Duchowicz, Pablo Román
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The aim of this work was to develop predictive structure-property relationships (QSPR) of natural andsynthetic sweeteners in order to predict and model relative sweetness (RS). The data set was composedof 233 sweeteners collected from diverse sources in the literature, which was divided into training(163) and test (70) molecules according to a procedure based on k-means cluster analysis. A total of3763 non-conformational Dragon molecular descriptors were calculated which were simultaneouslyanalyzed through multivariable linear regression analysis coupled with the replacement methodvariable subset selection technique. The established six-parameter model was validated throughthe cross-validation techniques, together with Y-randomization and applicability domain analysis.The results for the training set and the test set showed that the non-conformational descriptors offerrelevant information for modeling the RS of a compound. Thus, this model can be used to predictthe sweetness of both un-evaluated and un-synthesized sweeteners.
Fil: Rojas Villa, Cristian Xavier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Tripaldi, Piercosimo. Universidad del Azuay; Ecuador
Fil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina - Materia
-
Teoría Qspr
Relative Sweetness
K-Means Cluster Analysis - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/48870
Ver los metadatos del registro completo
id |
CONICETDig_4140c2976846ec37fbb8ae15d223a12f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/48870 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A New QSPR Study on Relative SweetnessRojas Villa, Cristian XavierTripaldi, PiercosimoDuchowicz, Pablo RománTeoría QsprRelative SweetnessK-Means Cluster Analysishttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The aim of this work was to develop predictive structure-property relationships (QSPR) of natural andsynthetic sweeteners in order to predict and model relative sweetness (RS). The data set was composedof 233 sweeteners collected from diverse sources in the literature, which was divided into training(163) and test (70) molecules according to a procedure based on k-means cluster analysis. A total of3763 non-conformational Dragon molecular descriptors were calculated which were simultaneouslyanalyzed through multivariable linear regression analysis coupled with the replacement methodvariable subset selection technique. The established six-parameter model was validated throughthe cross-validation techniques, together with Y-randomization and applicability domain analysis.The results for the training set and the test set showed that the non-conformational descriptors offerrelevant information for modeling the RS of a compound. Thus, this model can be used to predictthe sweetness of both un-evaluated and un-synthesized sweeteners.Fil: Rojas Villa, Cristian Xavier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Tripaldi, Piercosimo. Universidad del Azuay; EcuadorFil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaIGI-Global2016-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/48870Rojas Villa, Cristian Xavier; Tripaldi, Piercosimo; Duchowicz, Pablo Román; A New QSPR Study on Relative Sweetness; IGI-Global; International Journal of Quantitative Structure-Property Relationships; 1; 1; 1-2016; 78-932379-7479CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4018/IJQSPR.2016010104info:eu-repo/semantics/altIdentifier/url/https://www.igi-global.com/gateway/article/144691info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:25:54Zoai:ri.conicet.gov.ar:11336/48870instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:25:54.449CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A New QSPR Study on Relative Sweetness |
title |
A New QSPR Study on Relative Sweetness |
spellingShingle |
A New QSPR Study on Relative Sweetness Rojas Villa, Cristian Xavier Teoría Qspr Relative Sweetness K-Means Cluster Analysis |
title_short |
A New QSPR Study on Relative Sweetness |
title_full |
A New QSPR Study on Relative Sweetness |
title_fullStr |
A New QSPR Study on Relative Sweetness |
title_full_unstemmed |
A New QSPR Study on Relative Sweetness |
title_sort |
A New QSPR Study on Relative Sweetness |
dc.creator.none.fl_str_mv |
Rojas Villa, Cristian Xavier Tripaldi, Piercosimo Duchowicz, Pablo Román |
author |
Rojas Villa, Cristian Xavier |
author_facet |
Rojas Villa, Cristian Xavier Tripaldi, Piercosimo Duchowicz, Pablo Román |
author_role |
author |
author2 |
Tripaldi, Piercosimo Duchowicz, Pablo Román |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Teoría Qspr Relative Sweetness K-Means Cluster Analysis |
topic |
Teoría Qspr Relative Sweetness K-Means Cluster Analysis |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The aim of this work was to develop predictive structure-property relationships (QSPR) of natural andsynthetic sweeteners in order to predict and model relative sweetness (RS). The data set was composedof 233 sweeteners collected from diverse sources in the literature, which was divided into training(163) and test (70) molecules according to a procedure based on k-means cluster analysis. A total of3763 non-conformational Dragon molecular descriptors were calculated which were simultaneouslyanalyzed through multivariable linear regression analysis coupled with the replacement methodvariable subset selection technique. The established six-parameter model was validated throughthe cross-validation techniques, together with Y-randomization and applicability domain analysis.The results for the training set and the test set showed that the non-conformational descriptors offerrelevant information for modeling the RS of a compound. Thus, this model can be used to predictthe sweetness of both un-evaluated and un-synthesized sweeteners. Fil: Rojas Villa, Cristian Xavier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina Fil: Tripaldi, Piercosimo. Universidad del Azuay; Ecuador Fil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina |
description |
The aim of this work was to develop predictive structure-property relationships (QSPR) of natural andsynthetic sweeteners in order to predict and model relative sweetness (RS). The data set was composedof 233 sweeteners collected from diverse sources in the literature, which was divided into training(163) and test (70) molecules according to a procedure based on k-means cluster analysis. A total of3763 non-conformational Dragon molecular descriptors were calculated which were simultaneouslyanalyzed through multivariable linear regression analysis coupled with the replacement methodvariable subset selection technique. The established six-parameter model was validated throughthe cross-validation techniques, together with Y-randomization and applicability domain analysis.The results for the training set and the test set showed that the non-conformational descriptors offerrelevant information for modeling the RS of a compound. Thus, this model can be used to predictthe sweetness of both un-evaluated and un-synthesized sweeteners. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/48870 Rojas Villa, Cristian Xavier; Tripaldi, Piercosimo; Duchowicz, Pablo Román; A New QSPR Study on Relative Sweetness; IGI-Global; International Journal of Quantitative Structure-Property Relationships; 1; 1; 1-2016; 78-93 2379-7479 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/48870 |
identifier_str_mv |
Rojas Villa, Cristian Xavier; Tripaldi, Piercosimo; Duchowicz, Pablo Román; A New QSPR Study on Relative Sweetness; IGI-Global; International Journal of Quantitative Structure-Property Relationships; 1; 1; 1-2016; 78-93 2379-7479 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.4018/IJQSPR.2016010104 info:eu-repo/semantics/altIdentifier/url/https://www.igi-global.com/gateway/article/144691 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IGI-Global |
publisher.none.fl_str_mv |
IGI-Global |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082698665263104 |
score |
13.22299 |