QSPR analysis for the retention index of flavors and fragrances on a OV-101 column
- Autores
- Rojas, Cristian; Pis Diez, Reinaldo; Tripaldi, Piercosimo; Duchowicz, Pablo Román
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A predictive quantitative structure`property relationships (QSPR) is developed for modeling the retention index measured on the OV-101 glass capillary gas chromatography column, in a set of 1208 flavor and fragrance compounds. The 4885 molecular descriptors are calculated using the Dragon software and then are simultaneously analyzed through multivariable linear regression analysis using the replacement method (RM) variable subset selection technique. We proceed in three steps, the first one by considering all descriptor blocks, the second one by excluding conformational descriptors blocks, and the last one by analyzing only 3D-descriptors families. The models are properly validated through an external test set of compounds. Cross-validation methods such as leave-one-out and leave-more-out are applied, togetherwith Y-randomization and applicability domain analysis. The results clearly suggest that 3D-descriptors do not offer relevant information for modeling the retention index, while a topological index such as the solvation connectivity index of first order has a high relevance for this purpose.
Fil: Rojas, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Pis Diez, Reinaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Tripaldi, Piercosimo. Universidad del Azuay; Ecuador
Fil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Química Inorgánica; Argentina - Materia
-
Flavors And Fragrances
Ov-101 Column
Qspr Theory
Dragon Software
Replacement Method
K-Means Cluster Analysis
Total-Order Ranking
Dart - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/7556
Ver los metadatos del registro completo
id |
CONICETDig_f5f5d389c60e6c317ea29054f610a11d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/7556 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
QSPR analysis for the retention index of flavors and fragrances on a OV-101 columnRojas, CristianPis Diez, ReinaldoTripaldi, PiercosimoDuchowicz, Pablo RománFlavors And FragrancesOv-101 ColumnQspr TheoryDragon SoftwareReplacement MethodK-Means Cluster AnalysisTotal-Order RankingDarthttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1A predictive quantitative structure`property relationships (QSPR) is developed for modeling the retention index measured on the OV-101 glass capillary gas chromatography column, in a set of 1208 flavor and fragrance compounds. The 4885 molecular descriptors are calculated using the Dragon software and then are simultaneously analyzed through multivariable linear regression analysis using the replacement method (RM) variable subset selection technique. We proceed in three steps, the first one by considering all descriptor blocks, the second one by excluding conformational descriptors blocks, and the last one by analyzing only 3D-descriptors families. The models are properly validated through an external test set of compounds. Cross-validation methods such as leave-one-out and leave-more-out are applied, togetherwith Y-randomization and applicability domain analysis. The results clearly suggest that 3D-descriptors do not offer relevant information for modeling the retention index, while a topological index such as the solvation connectivity index of first order has a high relevance for this purpose.Fil: Rojas, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Pis Diez, Reinaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Tripaldi, Piercosimo. Universidad del Azuay; EcuadorFil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Química Inorgánica; ArgentinaElsevier Science2015-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/7556Rojas, Cristian; Pis Diez, Reinaldo; Tripaldi, Piercosimo; Duchowicz, Pablo Román; QSPR analysis for the retention index of flavors and fragrances on a OV-101 column; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 140; 1-2015; 126-1320169-7439enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0169743914002366info:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemolab.2014.09.020info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:40:47Zoai:ri.conicet.gov.ar:11336/7556instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:40:48.218CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
QSPR analysis for the retention index of flavors and fragrances on a OV-101 column |
title |
QSPR analysis for the retention index of flavors and fragrances on a OV-101 column |
spellingShingle |
QSPR analysis for the retention index of flavors and fragrances on a OV-101 column Rojas, Cristian Flavors And Fragrances Ov-101 Column Qspr Theory Dragon Software Replacement Method K-Means Cluster Analysis Total-Order Ranking Dart |
title_short |
QSPR analysis for the retention index of flavors and fragrances on a OV-101 column |
title_full |
QSPR analysis for the retention index of flavors and fragrances on a OV-101 column |
title_fullStr |
QSPR analysis for the retention index of flavors and fragrances on a OV-101 column |
title_full_unstemmed |
QSPR analysis for the retention index of flavors and fragrances on a OV-101 column |
title_sort |
QSPR analysis for the retention index of flavors and fragrances on a OV-101 column |
dc.creator.none.fl_str_mv |
Rojas, Cristian Pis Diez, Reinaldo Tripaldi, Piercosimo Duchowicz, Pablo Román |
author |
Rojas, Cristian |
author_facet |
Rojas, Cristian Pis Diez, Reinaldo Tripaldi, Piercosimo Duchowicz, Pablo Román |
author_role |
author |
author2 |
Pis Diez, Reinaldo Tripaldi, Piercosimo Duchowicz, Pablo Román |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Flavors And Fragrances Ov-101 Column Qspr Theory Dragon Software Replacement Method K-Means Cluster Analysis Total-Order Ranking Dart |
topic |
Flavors And Fragrances Ov-101 Column Qspr Theory Dragon Software Replacement Method K-Means Cluster Analysis Total-Order Ranking Dart |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A predictive quantitative structure`property relationships (QSPR) is developed for modeling the retention index measured on the OV-101 glass capillary gas chromatography column, in a set of 1208 flavor and fragrance compounds. The 4885 molecular descriptors are calculated using the Dragon software and then are simultaneously analyzed through multivariable linear regression analysis using the replacement method (RM) variable subset selection technique. We proceed in three steps, the first one by considering all descriptor blocks, the second one by excluding conformational descriptors blocks, and the last one by analyzing only 3D-descriptors families. The models are properly validated through an external test set of compounds. Cross-validation methods such as leave-one-out and leave-more-out are applied, togetherwith Y-randomization and applicability domain analysis. The results clearly suggest that 3D-descriptors do not offer relevant information for modeling the retention index, while a topological index such as the solvation connectivity index of first order has a high relevance for this purpose. Fil: Rojas, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina Fil: Pis Diez, Reinaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina Fil: Tripaldi, Piercosimo. Universidad del Azuay; Ecuador Fil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Química Inorgánica; Argentina |
description |
A predictive quantitative structure`property relationships (QSPR) is developed for modeling the retention index measured on the OV-101 glass capillary gas chromatography column, in a set of 1208 flavor and fragrance compounds. The 4885 molecular descriptors are calculated using the Dragon software and then are simultaneously analyzed through multivariable linear regression analysis using the replacement method (RM) variable subset selection technique. We proceed in three steps, the first one by considering all descriptor blocks, the second one by excluding conformational descriptors blocks, and the last one by analyzing only 3D-descriptors families. The models are properly validated through an external test set of compounds. Cross-validation methods such as leave-one-out and leave-more-out are applied, togetherwith Y-randomization and applicability domain analysis. The results clearly suggest that 3D-descriptors do not offer relevant information for modeling the retention index, while a topological index such as the solvation connectivity index of first order has a high relevance for this purpose. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/7556 Rojas, Cristian; Pis Diez, Reinaldo; Tripaldi, Piercosimo; Duchowicz, Pablo Román; QSPR analysis for the retention index of flavors and fragrances on a OV-101 column; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 140; 1-2015; 126-132 0169-7439 |
url |
http://hdl.handle.net/11336/7556 |
identifier_str_mv |
Rojas, Cristian; Pis Diez, Reinaldo; Tripaldi, Piercosimo; Duchowicz, Pablo Román; QSPR analysis for the retention index of flavors and fragrances on a OV-101 column; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 140; 1-2015; 126-132 0169-7439 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0169743914002366 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemolab.2014.09.020 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613290538303488 |
score |
13.070432 |