Theoretical modeling of the interaction chiral modifier/substrate as a key step in the enantioselective hydrogenation of α-ketoesters and vicinal diketones

Autores
Ruggera, José Fernando; Gázquez, Ayelén; Pis Diez, Reinaldo; Casella, Mónica Laura
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper deals with the computational modeling of the chiral modifier/substrate interaction for chiral modifiers studied in our laboratory, different from those conventionally used in enantioselective hydrogenation reactions. (S)- (+)-1-Aminoindane and (R)-(-)-1-aminoindane were chosen as chiral modifiers and the selected substrates were methyl pyruvate, ethyl pyruvate and 1-ethyl-4,4-dimethyl-pyrrolidin-2,3,5-trione. The geometry of each of the chiral modifier/substrate complexes was optimized using DFT calculations and a BLYP functional. The theoretical enantiomeric excess was calculated from the energy of each of the proposed complexes. The calculations were carried out considering different reaction solvents through the use of COSMO program. It was found that this simple model allows predicting the experimental values of both the sense of enantiodifferentiation and the enantiomeric excess with a good approximation. It was also able to predict the inversion of configuration when using the (S)-(+)-1-aminoindane as chiral modifier in polar solvents such as acetic acid and 2-propanol.
Fil: Ruggera, José Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco". Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Ciencias Aplicadas; Argentina
Fil: Gázquez, Ayelén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco". Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Ciencias Aplicadas; Argentina
Fil: Pis Diez, Reinaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Química Inorgánica "Dr. Pedro J. Aymonino". Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Química Inorgánica "Dr. Pedro J. Aymonino"; Argentina
Fil: Casella, Mónica Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco". Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Ciencias Aplicadas; Argentina
Materia
Theoretical Modeling
Enantioselectivity
Dft
Hydrogenation
Chiral Modifiers
Aminoindane
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/22391

id CONICETDig_40e95a8b2ec1900e2cf64ee6911c0a3d
oai_identifier_str oai:ri.conicet.gov.ar:11336/22391
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Theoretical modeling of the interaction chiral modifier/substrate as a key step in the enantioselective hydrogenation of α-ketoesters and vicinal diketonesRuggera, José FernandoGázquez, AyelénPis Diez, ReinaldoCasella, Mónica LauraTheoretical ModelingEnantioselectivityDftHydrogenationChiral ModifiersAminoindanehttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1This paper deals with the computational modeling of the chiral modifier/substrate interaction for chiral modifiers studied in our laboratory, different from those conventionally used in enantioselective hydrogenation reactions. (S)- (+)-1-Aminoindane and (R)-(-)-1-aminoindane were chosen as chiral modifiers and the selected substrates were methyl pyruvate, ethyl pyruvate and 1-ethyl-4,4-dimethyl-pyrrolidin-2,3,5-trione. The geometry of each of the chiral modifier/substrate complexes was optimized using DFT calculations and a BLYP functional. The theoretical enantiomeric excess was calculated from the energy of each of the proposed complexes. The calculations were carried out considering different reaction solvents through the use of COSMO program. It was found that this simple model allows predicting the experimental values of both the sense of enantiodifferentiation and the enantiomeric excess with a good approximation. It was also able to predict the inversion of configuration when using the (S)-(+)-1-aminoindane as chiral modifier in polar solvents such as acetic acid and 2-propanol.Fil: Ruggera, José Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco". Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Ciencias Aplicadas; ArgentinaFil: Gázquez, Ayelén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco". Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Ciencias Aplicadas; ArgentinaFil: Pis Diez, Reinaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Química Inorgánica "Dr. Pedro J. Aymonino". Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Química Inorgánica "Dr. Pedro J. Aymonino"; ArgentinaFil: Casella, Mónica Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco". Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Ciencias Aplicadas; ArgentinaBentham Science Publishers2014-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/22391Ruggera, José Fernando; Gázquez, Ayelén; Pis Diez, Reinaldo; Casella, Mónica Laura; Theoretical modeling of the interaction chiral modifier/substrate as a key step in the enantioselective hydrogenation of α-ketoesters and vicinal diketones; Bentham Science Publishers; Current Catalysis; 3; 2; 3-2014; 213-2192211-54472211-5455CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.eurekaselect.com/119154info:eu-repo/semantics/altIdentifier/doi/10.2174/2211544702666131224231309info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:14:47Zoai:ri.conicet.gov.ar:11336/22391instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:14:47.982CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Theoretical modeling of the interaction chiral modifier/substrate as a key step in the enantioselective hydrogenation of α-ketoesters and vicinal diketones
title Theoretical modeling of the interaction chiral modifier/substrate as a key step in the enantioselective hydrogenation of α-ketoesters and vicinal diketones
spellingShingle Theoretical modeling of the interaction chiral modifier/substrate as a key step in the enantioselective hydrogenation of α-ketoesters and vicinal diketones
Ruggera, José Fernando
Theoretical Modeling
Enantioselectivity
Dft
Hydrogenation
Chiral Modifiers
Aminoindane
title_short Theoretical modeling of the interaction chiral modifier/substrate as a key step in the enantioselective hydrogenation of α-ketoesters and vicinal diketones
title_full Theoretical modeling of the interaction chiral modifier/substrate as a key step in the enantioselective hydrogenation of α-ketoesters and vicinal diketones
title_fullStr Theoretical modeling of the interaction chiral modifier/substrate as a key step in the enantioselective hydrogenation of α-ketoesters and vicinal diketones
title_full_unstemmed Theoretical modeling of the interaction chiral modifier/substrate as a key step in the enantioselective hydrogenation of α-ketoesters and vicinal diketones
title_sort Theoretical modeling of the interaction chiral modifier/substrate as a key step in the enantioselective hydrogenation of α-ketoesters and vicinal diketones
dc.creator.none.fl_str_mv Ruggera, José Fernando
Gázquez, Ayelén
Pis Diez, Reinaldo
Casella, Mónica Laura
author Ruggera, José Fernando
author_facet Ruggera, José Fernando
Gázquez, Ayelén
Pis Diez, Reinaldo
Casella, Mónica Laura
author_role author
author2 Gázquez, Ayelén
Pis Diez, Reinaldo
Casella, Mónica Laura
author2_role author
author
author
dc.subject.none.fl_str_mv Theoretical Modeling
Enantioselectivity
Dft
Hydrogenation
Chiral Modifiers
Aminoindane
topic Theoretical Modeling
Enantioselectivity
Dft
Hydrogenation
Chiral Modifiers
Aminoindane
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv This paper deals with the computational modeling of the chiral modifier/substrate interaction for chiral modifiers studied in our laboratory, different from those conventionally used in enantioselective hydrogenation reactions. (S)- (+)-1-Aminoindane and (R)-(-)-1-aminoindane were chosen as chiral modifiers and the selected substrates were methyl pyruvate, ethyl pyruvate and 1-ethyl-4,4-dimethyl-pyrrolidin-2,3,5-trione. The geometry of each of the chiral modifier/substrate complexes was optimized using DFT calculations and a BLYP functional. The theoretical enantiomeric excess was calculated from the energy of each of the proposed complexes. The calculations were carried out considering different reaction solvents through the use of COSMO program. It was found that this simple model allows predicting the experimental values of both the sense of enantiodifferentiation and the enantiomeric excess with a good approximation. It was also able to predict the inversion of configuration when using the (S)-(+)-1-aminoindane as chiral modifier in polar solvents such as acetic acid and 2-propanol.
Fil: Ruggera, José Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco". Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Ciencias Aplicadas; Argentina
Fil: Gázquez, Ayelén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco". Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Ciencias Aplicadas; Argentina
Fil: Pis Diez, Reinaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Química Inorgánica "Dr. Pedro J. Aymonino". Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Química Inorgánica "Dr. Pedro J. Aymonino"; Argentina
Fil: Casella, Mónica Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco". Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Ciencias Aplicadas; Argentina
description This paper deals with the computational modeling of the chiral modifier/substrate interaction for chiral modifiers studied in our laboratory, different from those conventionally used in enantioselective hydrogenation reactions. (S)- (+)-1-Aminoindane and (R)-(-)-1-aminoindane were chosen as chiral modifiers and the selected substrates were methyl pyruvate, ethyl pyruvate and 1-ethyl-4,4-dimethyl-pyrrolidin-2,3,5-trione. The geometry of each of the chiral modifier/substrate complexes was optimized using DFT calculations and a BLYP functional. The theoretical enantiomeric excess was calculated from the energy of each of the proposed complexes. The calculations were carried out considering different reaction solvents through the use of COSMO program. It was found that this simple model allows predicting the experimental values of both the sense of enantiodifferentiation and the enantiomeric excess with a good approximation. It was also able to predict the inversion of configuration when using the (S)-(+)-1-aminoindane as chiral modifier in polar solvents such as acetic acid and 2-propanol.
publishDate 2014
dc.date.none.fl_str_mv 2014-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/22391
Ruggera, José Fernando; Gázquez, Ayelén; Pis Diez, Reinaldo; Casella, Mónica Laura; Theoretical modeling of the interaction chiral modifier/substrate as a key step in the enantioselective hydrogenation of α-ketoesters and vicinal diketones; Bentham Science Publishers; Current Catalysis; 3; 2; 3-2014; 213-219
2211-5447
2211-5455
CONICET Digital
CONICET
url http://hdl.handle.net/11336/22391
identifier_str_mv Ruggera, José Fernando; Gázquez, Ayelén; Pis Diez, Reinaldo; Casella, Mónica Laura; Theoretical modeling of the interaction chiral modifier/substrate as a key step in the enantioselective hydrogenation of α-ketoesters and vicinal diketones; Bentham Science Publishers; Current Catalysis; 3; 2; 3-2014; 213-219
2211-5447
2211-5455
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.eurekaselect.com/119154
info:eu-repo/semantics/altIdentifier/doi/10.2174/2211544702666131224231309
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Bentham Science Publishers
publisher.none.fl_str_mv Bentham Science Publishers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614078897586176
score 13.070432