CRONOSOJA: a daily time-step hierarchical model predicting soybean development across maturity groups in the Southern Cone
- Autores
- Severini, Alan David; Alvarez Prado, Santiago; Otegui, Maria Elena; Kavanová, Monika; Vega, Claudia Rosa Cecilia; Zuil, Sebastian; Ceretta, Sergio; Acreche, Martin Moises; Amarilla, Fidencia; Cicchino, Mariano Andrés; Fernández Long, María Elena; Crespo, Aníbal; Serrago, Roman Augusto; Miralles, Daniel Julio
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Accurate prediction of phenology is the most critical aspect for the development of models aimed at estimating seed yield, particularly in species that exhibit variable sensitivity to environmental factors throughout the cycle and among genotypes. With this purpose, we evaluated the phenology of 34 soybean varieties in feld experiments located in Argentina, Uruguay and Paraguay. Experiments covered a broad range of maturity group (MG)s (2.2–6.8), sowing dates (SDs) (from spring to summer) and latitude range (24.9–35.6 °S), thus ensuring a wide range of thermo-photoperiodic conditions during the growing season. Based on the observed data, daily time-step models were developed and tested, frst for each genotype, and then across MGs. We identifed base temperatures specifc for diferent developmental phases and an extra parameter for calculating the photoperiod efect afer the R1 stage (fowering). Also, an optimum photoperiod length for each MG was found. Model selection showed that the determinants of phenology across MGs were mainly afecting the duration of vegetative and early reproductive phases. Even so, early phases of development were beter predicted than later ones, particularly in locations with cool growing seasons, where the model tended to overestimate their duration. In summary, we have constructed a soybean phenology model that simulates phenology accurately across various geographic locations and sowing dates. The model’s process-based approach has resulted in root mean square errors ranging from 5.8 to 9.5 days for diferent developmental stages.
Fil: Severini, Alan David. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Pergamino; Argentina
Fil: Alvarez Prado, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario; Argentina
Fil: Otegui, Maria Elena. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Pergamino; Argentina
Fil: Kavanová, Monika. Instituto Nacional de Investigacion Agropecuaria;
Fil: Vega, Claudia Rosa Cecilia. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Córdoba. Estación Experimental Agropecuaria Manfredi; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Zuil, Sebastian. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Rafaela; Argentina
Fil: Ceretta, Sergio. Estacion Experimental la Estanzuela ; Instituto Nacional de Investigacion Agropecuaria;
Fil: Acreche, Martin Moises. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Salta-Jujuy. Estación Experimental Agropecuaria Salta; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Amarilla, Fidencia. Instituto Paraguayo de Tecnología Agraria; Paraguay
Fil: Cicchino, Mariano Andrés. Instituto Nacional de Tecnologia Agropecuaria. Centro Regional Buenos Aires Sur. Estacion Experimental Agropecuaria Cuenca del Salado.; Argentina
Fil: Fernández Long, María Elena. Universidad de Buenos Aires. Facultad de Agronomía; Argentina
Fil: Crespo, Aníbal. Universidad de Buenos Aires. Facultad de Agronomía; Argentina
Fil: Serrago, Roman Augusto. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Miralles, Daniel Julio. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Bayesian
Decision-making
Dynamic model
Model development
Phenology
Soybean - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/239397
Ver los metadatos del registro completo
id |
CONICETDig_3f4a7fefab46f9e790f2b44deab700a6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/239397 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
CRONOSOJA: a daily time-step hierarchical model predicting soybean development across maturity groups in the Southern ConeSeverini, Alan DavidAlvarez Prado, SantiagoOtegui, Maria ElenaKavanová, MonikaVega, Claudia Rosa CeciliaZuil, SebastianCeretta, SergioAcreche, Martin MoisesAmarilla, FidenciaCicchino, Mariano AndrésFernández Long, María ElenaCrespo, AníbalSerrago, Roman AugustoMiralles, Daniel JulioBayesianDecision-makingDynamic modelModel developmentPhenologySoybeanhttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4Accurate prediction of phenology is the most critical aspect for the development of models aimed at estimating seed yield, particularly in species that exhibit variable sensitivity to environmental factors throughout the cycle and among genotypes. With this purpose, we evaluated the phenology of 34 soybean varieties in feld experiments located in Argentina, Uruguay and Paraguay. Experiments covered a broad range of maturity group (MG)s (2.2–6.8), sowing dates (SDs) (from spring to summer) and latitude range (24.9–35.6 °S), thus ensuring a wide range of thermo-photoperiodic conditions during the growing season. Based on the observed data, daily time-step models were developed and tested, frst for each genotype, and then across MGs. We identifed base temperatures specifc for diferent developmental phases and an extra parameter for calculating the photoperiod efect afer the R1 stage (fowering). Also, an optimum photoperiod length for each MG was found. Model selection showed that the determinants of phenology across MGs were mainly afecting the duration of vegetative and early reproductive phases. Even so, early phases of development were beter predicted than later ones, particularly in locations with cool growing seasons, where the model tended to overestimate their duration. In summary, we have constructed a soybean phenology model that simulates phenology accurately across various geographic locations and sowing dates. The model’s process-based approach has resulted in root mean square errors ranging from 5.8 to 9.5 days for diferent developmental stages.Fil: Severini, Alan David. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Pergamino; ArgentinaFil: Alvarez Prado, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario; ArgentinaFil: Otegui, Maria Elena. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Pergamino; ArgentinaFil: Kavanová, Monika. Instituto Nacional de Investigacion Agropecuaria;Fil: Vega, Claudia Rosa Cecilia. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Córdoba. Estación Experimental Agropecuaria Manfredi; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Zuil, Sebastian. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Rafaela; ArgentinaFil: Ceretta, Sergio. Estacion Experimental la Estanzuela ; Instituto Nacional de Investigacion Agropecuaria;Fil: Acreche, Martin Moises. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Salta-Jujuy. Estación Experimental Agropecuaria Salta; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Amarilla, Fidencia. Instituto Paraguayo de Tecnología Agraria; ParaguayFil: Cicchino, Mariano Andrés. Instituto Nacional de Tecnologia Agropecuaria. Centro Regional Buenos Aires Sur. Estacion Experimental Agropecuaria Cuenca del Salado.; ArgentinaFil: Fernández Long, María Elena. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Crespo, Aníbal. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Serrago, Roman Augusto. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Miralles, Daniel Julio. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaOxford University Press2024-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/239397Severini, Alan David; Alvarez Prado, Santiago; Otegui, Maria Elena; Kavanová, Monika; Vega, Claudia Rosa Cecilia; et al.; CRONOSOJA: a daily time-step hierarchical model predicting soybean development across maturity groups in the Southern Cone; Oxford University Press; in silico Plants; 6; 1; 1-2024; 1-192517-5025CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/insilicoplants/article/doi/10.1093/insilicoplants/diae005/7667638info:eu-repo/semantics/altIdentifier/doi/10.1093/insilicoplants/diae005info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:46:40Zoai:ri.conicet.gov.ar:11336/239397instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:46:40.654CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
CRONOSOJA: a daily time-step hierarchical model predicting soybean development across maturity groups in the Southern Cone |
title |
CRONOSOJA: a daily time-step hierarchical model predicting soybean development across maturity groups in the Southern Cone |
spellingShingle |
CRONOSOJA: a daily time-step hierarchical model predicting soybean development across maturity groups in the Southern Cone Severini, Alan David Bayesian Decision-making Dynamic model Model development Phenology Soybean |
title_short |
CRONOSOJA: a daily time-step hierarchical model predicting soybean development across maturity groups in the Southern Cone |
title_full |
CRONOSOJA: a daily time-step hierarchical model predicting soybean development across maturity groups in the Southern Cone |
title_fullStr |
CRONOSOJA: a daily time-step hierarchical model predicting soybean development across maturity groups in the Southern Cone |
title_full_unstemmed |
CRONOSOJA: a daily time-step hierarchical model predicting soybean development across maturity groups in the Southern Cone |
title_sort |
CRONOSOJA: a daily time-step hierarchical model predicting soybean development across maturity groups in the Southern Cone |
dc.creator.none.fl_str_mv |
Severini, Alan David Alvarez Prado, Santiago Otegui, Maria Elena Kavanová, Monika Vega, Claudia Rosa Cecilia Zuil, Sebastian Ceretta, Sergio Acreche, Martin Moises Amarilla, Fidencia Cicchino, Mariano Andrés Fernández Long, María Elena Crespo, Aníbal Serrago, Roman Augusto Miralles, Daniel Julio |
author |
Severini, Alan David |
author_facet |
Severini, Alan David Alvarez Prado, Santiago Otegui, Maria Elena Kavanová, Monika Vega, Claudia Rosa Cecilia Zuil, Sebastian Ceretta, Sergio Acreche, Martin Moises Amarilla, Fidencia Cicchino, Mariano Andrés Fernández Long, María Elena Crespo, Aníbal Serrago, Roman Augusto Miralles, Daniel Julio |
author_role |
author |
author2 |
Alvarez Prado, Santiago Otegui, Maria Elena Kavanová, Monika Vega, Claudia Rosa Cecilia Zuil, Sebastian Ceretta, Sergio Acreche, Martin Moises Amarilla, Fidencia Cicchino, Mariano Andrés Fernández Long, María Elena Crespo, Aníbal Serrago, Roman Augusto Miralles, Daniel Julio |
author2_role |
author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Bayesian Decision-making Dynamic model Model development Phenology Soybean |
topic |
Bayesian Decision-making Dynamic model Model development Phenology Soybean |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.1 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
Accurate prediction of phenology is the most critical aspect for the development of models aimed at estimating seed yield, particularly in species that exhibit variable sensitivity to environmental factors throughout the cycle and among genotypes. With this purpose, we evaluated the phenology of 34 soybean varieties in feld experiments located in Argentina, Uruguay and Paraguay. Experiments covered a broad range of maturity group (MG)s (2.2–6.8), sowing dates (SDs) (from spring to summer) and latitude range (24.9–35.6 °S), thus ensuring a wide range of thermo-photoperiodic conditions during the growing season. Based on the observed data, daily time-step models were developed and tested, frst for each genotype, and then across MGs. We identifed base temperatures specifc for diferent developmental phases and an extra parameter for calculating the photoperiod efect afer the R1 stage (fowering). Also, an optimum photoperiod length for each MG was found. Model selection showed that the determinants of phenology across MGs were mainly afecting the duration of vegetative and early reproductive phases. Even so, early phases of development were beter predicted than later ones, particularly in locations with cool growing seasons, where the model tended to overestimate their duration. In summary, we have constructed a soybean phenology model that simulates phenology accurately across various geographic locations and sowing dates. The model’s process-based approach has resulted in root mean square errors ranging from 5.8 to 9.5 days for diferent developmental stages. Fil: Severini, Alan David. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Pergamino; Argentina Fil: Alvarez Prado, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario; Argentina Fil: Otegui, Maria Elena. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Pergamino; Argentina Fil: Kavanová, Monika. Instituto Nacional de Investigacion Agropecuaria; Fil: Vega, Claudia Rosa Cecilia. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Córdoba. Estación Experimental Agropecuaria Manfredi; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Zuil, Sebastian. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Rafaela; Argentina Fil: Ceretta, Sergio. Estacion Experimental la Estanzuela ; Instituto Nacional de Investigacion Agropecuaria; Fil: Acreche, Martin Moises. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Salta-Jujuy. Estación Experimental Agropecuaria Salta; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Amarilla, Fidencia. Instituto Paraguayo de Tecnología Agraria; Paraguay Fil: Cicchino, Mariano Andrés. Instituto Nacional de Tecnologia Agropecuaria. Centro Regional Buenos Aires Sur. Estacion Experimental Agropecuaria Cuenca del Salado.; Argentina Fil: Fernández Long, María Elena. Universidad de Buenos Aires. Facultad de Agronomía; Argentina Fil: Crespo, Aníbal. Universidad de Buenos Aires. Facultad de Agronomía; Argentina Fil: Serrago, Roman Augusto. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Miralles, Daniel Julio. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Accurate prediction of phenology is the most critical aspect for the development of models aimed at estimating seed yield, particularly in species that exhibit variable sensitivity to environmental factors throughout the cycle and among genotypes. With this purpose, we evaluated the phenology of 34 soybean varieties in feld experiments located in Argentina, Uruguay and Paraguay. Experiments covered a broad range of maturity group (MG)s (2.2–6.8), sowing dates (SDs) (from spring to summer) and latitude range (24.9–35.6 °S), thus ensuring a wide range of thermo-photoperiodic conditions during the growing season. Based on the observed data, daily time-step models were developed and tested, frst for each genotype, and then across MGs. We identifed base temperatures specifc for diferent developmental phases and an extra parameter for calculating the photoperiod efect afer the R1 stage (fowering). Also, an optimum photoperiod length for each MG was found. Model selection showed that the determinants of phenology across MGs were mainly afecting the duration of vegetative and early reproductive phases. Even so, early phases of development were beter predicted than later ones, particularly in locations with cool growing seasons, where the model tended to overestimate their duration. In summary, we have constructed a soybean phenology model that simulates phenology accurately across various geographic locations and sowing dates. The model’s process-based approach has resulted in root mean square errors ranging from 5.8 to 9.5 days for diferent developmental stages. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/239397 Severini, Alan David; Alvarez Prado, Santiago; Otegui, Maria Elena; Kavanová, Monika; Vega, Claudia Rosa Cecilia; et al.; CRONOSOJA: a daily time-step hierarchical model predicting soybean development across maturity groups in the Southern Cone; Oxford University Press; in silico Plants; 6; 1; 1-2024; 1-19 2517-5025 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/239397 |
identifier_str_mv |
Severini, Alan David; Alvarez Prado, Santiago; Otegui, Maria Elena; Kavanová, Monika; Vega, Claudia Rosa Cecilia; et al.; CRONOSOJA: a daily time-step hierarchical model predicting soybean development across maturity groups in the Southern Cone; Oxford University Press; in silico Plants; 6; 1; 1-2024; 1-19 2517-5025 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/insilicoplants/article/doi/10.1093/insilicoplants/diae005/7667638 info:eu-repo/semantics/altIdentifier/doi/10.1093/insilicoplants/diae005 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613457394008064 |
score |
13.070432 |