Conformational Flexibility Drives Cold Adaptation in Pseudoalteromonas haloplanktis TAC125 Globins
- Autores
- Giordano, Daniela; Boubeta, Fernando Martín; di Prisco, Guido; Estrin, Dario Ariel; Smulevich, Giulietta; Viappiani, Christiano; Verde, Cinzia
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Significance: Temperature is one of the most important drivers in shaping protein adaptations. Many biochemical and physiological processes are influenced by temperature. Proteins and enzymes from organisms living at low temperature are less stable in comparison to high-temperature adapted proteins. The lower stability is generally due to greater conformational flexibility. Recent Advances: Adaptive changes in the structure of cold-adapted proteins may occur at subunit interfaces, distant from the active site, thus producing energy changes associated with conformational transitions transmitted to the active site by allosteric modulation, valid also for monomeric proteins in which tertiary structural changes may play an essential role. Critical Issues: Despite efforts, the current experimental and computational methods still fail to produce general principles on protein evolution, since many changes are protein and species dependent. Environmental constraints or other biological cellular signals may override the ancestral information included in the structure of the protein, thus introducing inaccuracy in estimates and predictions on the evolutionary adaptations of proteins in response to cold adaptation. Future Directions: In this review, we describe the studies and approaches used to investigate stability and flexibility in the cold-adapted globins of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. In fact, future research directions will be prescient on more detailed investigation of cold-adapted proteins and the role of fluctuations between different conformational states.
Fil: Giordano, Daniela. Institute Of Biosciences And Bioresources; Italia
Fil: Boubeta, Fernando Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: di Prisco, Guido. Institute Of Biosciences And Bioresources; Italia
Fil: Estrin, Dario Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Smulevich, Giulietta. Firenze University; Italia
Fil: Viappiani, Christiano. Università di Parma; Italia
Fil: Verde, Cinzia. Institute Of Biosciences And Bioresources; Italia - Materia
-
BACTERIAL GLOBIN
HEME-POCKET FLEXIBILITY
HEXA-COORDINATION
OXIDATIVE/NITROSATIVE STRESS
THERMAL ADAPTATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/123695
Ver los metadatos del registro completo
id |
CONICETDig_3eff7e8a34c74b19a210ee1d660c44ca |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/123695 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Conformational Flexibility Drives Cold Adaptation in Pseudoalteromonas haloplanktis TAC125 GlobinsGiordano, DanielaBoubeta, Fernando Martíndi Prisco, GuidoEstrin, Dario ArielSmulevich, GiuliettaViappiani, ChristianoVerde, CinziaBACTERIAL GLOBINHEME-POCKET FLEXIBILITYHEXA-COORDINATIONOXIDATIVE/NITROSATIVE STRESSTHERMAL ADAPTATIONhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Significance: Temperature is one of the most important drivers in shaping protein adaptations. Many biochemical and physiological processes are influenced by temperature. Proteins and enzymes from organisms living at low temperature are less stable in comparison to high-temperature adapted proteins. The lower stability is generally due to greater conformational flexibility. Recent Advances: Adaptive changes in the structure of cold-adapted proteins may occur at subunit interfaces, distant from the active site, thus producing energy changes associated with conformational transitions transmitted to the active site by allosteric modulation, valid also for monomeric proteins in which tertiary structural changes may play an essential role. Critical Issues: Despite efforts, the current experimental and computational methods still fail to produce general principles on protein evolution, since many changes are protein and species dependent. Environmental constraints or other biological cellular signals may override the ancestral information included in the structure of the protein, thus introducing inaccuracy in estimates and predictions on the evolutionary adaptations of proteins in response to cold adaptation. Future Directions: In this review, we describe the studies and approaches used to investigate stability and flexibility in the cold-adapted globins of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. In fact, future research directions will be prescient on more detailed investigation of cold-adapted proteins and the role of fluctuations between different conformational states.Fil: Giordano, Daniela. Institute Of Biosciences And Bioresources; ItaliaFil: Boubeta, Fernando Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: di Prisco, Guido. Institute Of Biosciences And Bioresources; ItaliaFil: Estrin, Dario Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Smulevich, Giulietta. Firenze University; ItaliaFil: Viappiani, Christiano. Università di Parma; ItaliaFil: Verde, Cinzia. Institute Of Biosciences And Bioresources; ItaliaMary Ann Liebert2019-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/123695Giordano, Daniela; Boubeta, Fernando Martín; di Prisco, Guido; Estrin, Dario Ariel; Smulevich, Giulietta; et al.; Conformational Flexibility Drives Cold Adaptation in Pseudoalteromonas haloplanktis TAC125 Globins; Mary Ann Liebert; Antioxidants & Redox Signaling; 32; 6; 10-2019; 396-4111523-0864CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.liebertpub.com/doi/10.1089/ars.2019.7887info:eu-repo/semantics/altIdentifier/doi/10.1089/ars.2019.7887info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:36:56Zoai:ri.conicet.gov.ar:11336/123695instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:36:56.324CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Conformational Flexibility Drives Cold Adaptation in Pseudoalteromonas haloplanktis TAC125 Globins |
title |
Conformational Flexibility Drives Cold Adaptation in Pseudoalteromonas haloplanktis TAC125 Globins |
spellingShingle |
Conformational Flexibility Drives Cold Adaptation in Pseudoalteromonas haloplanktis TAC125 Globins Giordano, Daniela BACTERIAL GLOBIN HEME-POCKET FLEXIBILITY HEXA-COORDINATION OXIDATIVE/NITROSATIVE STRESS THERMAL ADAPTATION |
title_short |
Conformational Flexibility Drives Cold Adaptation in Pseudoalteromonas haloplanktis TAC125 Globins |
title_full |
Conformational Flexibility Drives Cold Adaptation in Pseudoalteromonas haloplanktis TAC125 Globins |
title_fullStr |
Conformational Flexibility Drives Cold Adaptation in Pseudoalteromonas haloplanktis TAC125 Globins |
title_full_unstemmed |
Conformational Flexibility Drives Cold Adaptation in Pseudoalteromonas haloplanktis TAC125 Globins |
title_sort |
Conformational Flexibility Drives Cold Adaptation in Pseudoalteromonas haloplanktis TAC125 Globins |
dc.creator.none.fl_str_mv |
Giordano, Daniela Boubeta, Fernando Martín di Prisco, Guido Estrin, Dario Ariel Smulevich, Giulietta Viappiani, Christiano Verde, Cinzia |
author |
Giordano, Daniela |
author_facet |
Giordano, Daniela Boubeta, Fernando Martín di Prisco, Guido Estrin, Dario Ariel Smulevich, Giulietta Viappiani, Christiano Verde, Cinzia |
author_role |
author |
author2 |
Boubeta, Fernando Martín di Prisco, Guido Estrin, Dario Ariel Smulevich, Giulietta Viappiani, Christiano Verde, Cinzia |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
BACTERIAL GLOBIN HEME-POCKET FLEXIBILITY HEXA-COORDINATION OXIDATIVE/NITROSATIVE STRESS THERMAL ADAPTATION |
topic |
BACTERIAL GLOBIN HEME-POCKET FLEXIBILITY HEXA-COORDINATION OXIDATIVE/NITROSATIVE STRESS THERMAL ADAPTATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Significance: Temperature is one of the most important drivers in shaping protein adaptations. Many biochemical and physiological processes are influenced by temperature. Proteins and enzymes from organisms living at low temperature are less stable in comparison to high-temperature adapted proteins. The lower stability is generally due to greater conformational flexibility. Recent Advances: Adaptive changes in the structure of cold-adapted proteins may occur at subunit interfaces, distant from the active site, thus producing energy changes associated with conformational transitions transmitted to the active site by allosteric modulation, valid also for monomeric proteins in which tertiary structural changes may play an essential role. Critical Issues: Despite efforts, the current experimental and computational methods still fail to produce general principles on protein evolution, since many changes are protein and species dependent. Environmental constraints or other biological cellular signals may override the ancestral information included in the structure of the protein, thus introducing inaccuracy in estimates and predictions on the evolutionary adaptations of proteins in response to cold adaptation. Future Directions: In this review, we describe the studies and approaches used to investigate stability and flexibility in the cold-adapted globins of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. In fact, future research directions will be prescient on more detailed investigation of cold-adapted proteins and the role of fluctuations between different conformational states. Fil: Giordano, Daniela. Institute Of Biosciences And Bioresources; Italia Fil: Boubeta, Fernando Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: di Prisco, Guido. Institute Of Biosciences And Bioresources; Italia Fil: Estrin, Dario Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Smulevich, Giulietta. Firenze University; Italia Fil: Viappiani, Christiano. Università di Parma; Italia Fil: Verde, Cinzia. Institute Of Biosciences And Bioresources; Italia |
description |
Significance: Temperature is one of the most important drivers in shaping protein adaptations. Many biochemical and physiological processes are influenced by temperature. Proteins and enzymes from organisms living at low temperature are less stable in comparison to high-temperature adapted proteins. The lower stability is generally due to greater conformational flexibility. Recent Advances: Adaptive changes in the structure of cold-adapted proteins may occur at subunit interfaces, distant from the active site, thus producing energy changes associated with conformational transitions transmitted to the active site by allosteric modulation, valid also for monomeric proteins in which tertiary structural changes may play an essential role. Critical Issues: Despite efforts, the current experimental and computational methods still fail to produce general principles on protein evolution, since many changes are protein and species dependent. Environmental constraints or other biological cellular signals may override the ancestral information included in the structure of the protein, thus introducing inaccuracy in estimates and predictions on the evolutionary adaptations of proteins in response to cold adaptation. Future Directions: In this review, we describe the studies and approaches used to investigate stability and flexibility in the cold-adapted globins of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. In fact, future research directions will be prescient on more detailed investigation of cold-adapted proteins and the role of fluctuations between different conformational states. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/123695 Giordano, Daniela; Boubeta, Fernando Martín; di Prisco, Guido; Estrin, Dario Ariel; Smulevich, Giulietta; et al.; Conformational Flexibility Drives Cold Adaptation in Pseudoalteromonas haloplanktis TAC125 Globins; Mary Ann Liebert; Antioxidants & Redox Signaling; 32; 6; 10-2019; 396-411 1523-0864 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/123695 |
identifier_str_mv |
Giordano, Daniela; Boubeta, Fernando Martín; di Prisco, Guido; Estrin, Dario Ariel; Smulevich, Giulietta; et al.; Conformational Flexibility Drives Cold Adaptation in Pseudoalteromonas haloplanktis TAC125 Globins; Mary Ann Liebert; Antioxidants & Redox Signaling; 32; 6; 10-2019; 396-411 1523-0864 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.liebertpub.com/doi/10.1089/ars.2019.7887 info:eu-repo/semantics/altIdentifier/doi/10.1089/ars.2019.7887 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Mary Ann Liebert |
publisher.none.fl_str_mv |
Mary Ann Liebert |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614389826584576 |
score |
13.070432 |