Conformational Flexibility Drives Cold Adaptation in Pseudoalteromonas haloplanktis TAC125 Globins

Autores
Giordano, Daniela; Boubeta, Fernando Martín; di Prisco, Guido; Estrin, Dario Ariel; Smulevich, Giulietta; Viappiani, Christiano; Verde, Cinzia
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Significance: Temperature is one of the most important drivers in shaping protein adaptations. Many biochemical and physiological processes are influenced by temperature. Proteins and enzymes from organisms living at low temperature are less stable in comparison to high-temperature adapted proteins. The lower stability is generally due to greater conformational flexibility. Recent Advances: Adaptive changes in the structure of cold-adapted proteins may occur at subunit interfaces, distant from the active site, thus producing energy changes associated with conformational transitions transmitted to the active site by allosteric modulation, valid also for monomeric proteins in which tertiary structural changes may play an essential role. Critical Issues: Despite efforts, the current experimental and computational methods still fail to produce general principles on protein evolution, since many changes are protein and species dependent. Environmental constraints or other biological cellular signals may override the ancestral information included in the structure of the protein, thus introducing inaccuracy in estimates and predictions on the evolutionary adaptations of proteins in response to cold adaptation. Future Directions: In this review, we describe the studies and approaches used to investigate stability and flexibility in the cold-adapted globins of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. In fact, future research directions will be prescient on more detailed investigation of cold-adapted proteins and the role of fluctuations between different conformational states.
Fil: Giordano, Daniela. Institute Of Biosciences And Bioresources; Italia
Fil: Boubeta, Fernando Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: di Prisco, Guido. Institute Of Biosciences And Bioresources; Italia
Fil: Estrin, Dario Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Smulevich, Giulietta. Firenze University; Italia
Fil: Viappiani, Christiano. Università di Parma; Italia
Fil: Verde, Cinzia. Institute Of Biosciences And Bioresources; Italia
Materia
BACTERIAL GLOBIN
HEME-POCKET FLEXIBILITY
HEXA-COORDINATION
OXIDATIVE/NITROSATIVE STRESS
THERMAL ADAPTATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/123695

id CONICETDig_3eff7e8a34c74b19a210ee1d660c44ca
oai_identifier_str oai:ri.conicet.gov.ar:11336/123695
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Conformational Flexibility Drives Cold Adaptation in Pseudoalteromonas haloplanktis TAC125 GlobinsGiordano, DanielaBoubeta, Fernando Martíndi Prisco, GuidoEstrin, Dario ArielSmulevich, GiuliettaViappiani, ChristianoVerde, CinziaBACTERIAL GLOBINHEME-POCKET FLEXIBILITYHEXA-COORDINATIONOXIDATIVE/NITROSATIVE STRESSTHERMAL ADAPTATIONhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Significance: Temperature is one of the most important drivers in shaping protein adaptations. Many biochemical and physiological processes are influenced by temperature. Proteins and enzymes from organisms living at low temperature are less stable in comparison to high-temperature adapted proteins. The lower stability is generally due to greater conformational flexibility. Recent Advances: Adaptive changes in the structure of cold-adapted proteins may occur at subunit interfaces, distant from the active site, thus producing energy changes associated with conformational transitions transmitted to the active site by allosteric modulation, valid also for monomeric proteins in which tertiary structural changes may play an essential role. Critical Issues: Despite efforts, the current experimental and computational methods still fail to produce general principles on protein evolution, since many changes are protein and species dependent. Environmental constraints or other biological cellular signals may override the ancestral information included in the structure of the protein, thus introducing inaccuracy in estimates and predictions on the evolutionary adaptations of proteins in response to cold adaptation. Future Directions: In this review, we describe the studies and approaches used to investigate stability and flexibility in the cold-adapted globins of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. In fact, future research directions will be prescient on more detailed investigation of cold-adapted proteins and the role of fluctuations between different conformational states.Fil: Giordano, Daniela. Institute Of Biosciences And Bioresources; ItaliaFil: Boubeta, Fernando Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: di Prisco, Guido. Institute Of Biosciences And Bioresources; ItaliaFil: Estrin, Dario Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Smulevich, Giulietta. Firenze University; ItaliaFil: Viappiani, Christiano. Università di Parma; ItaliaFil: Verde, Cinzia. Institute Of Biosciences And Bioresources; ItaliaMary Ann Liebert2019-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/123695Giordano, Daniela; Boubeta, Fernando Martín; di Prisco, Guido; Estrin, Dario Ariel; Smulevich, Giulietta; et al.; Conformational Flexibility Drives Cold Adaptation in Pseudoalteromonas haloplanktis TAC125 Globins; Mary Ann Liebert; Antioxidants & Redox Signaling; 32; 6; 10-2019; 396-4111523-0864CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.liebertpub.com/doi/10.1089/ars.2019.7887info:eu-repo/semantics/altIdentifier/doi/10.1089/ars.2019.7887info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:36:56Zoai:ri.conicet.gov.ar:11336/123695instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:36:56.324CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Conformational Flexibility Drives Cold Adaptation in Pseudoalteromonas haloplanktis TAC125 Globins
title Conformational Flexibility Drives Cold Adaptation in Pseudoalteromonas haloplanktis TAC125 Globins
spellingShingle Conformational Flexibility Drives Cold Adaptation in Pseudoalteromonas haloplanktis TAC125 Globins
Giordano, Daniela
BACTERIAL GLOBIN
HEME-POCKET FLEXIBILITY
HEXA-COORDINATION
OXIDATIVE/NITROSATIVE STRESS
THERMAL ADAPTATION
title_short Conformational Flexibility Drives Cold Adaptation in Pseudoalteromonas haloplanktis TAC125 Globins
title_full Conformational Flexibility Drives Cold Adaptation in Pseudoalteromonas haloplanktis TAC125 Globins
title_fullStr Conformational Flexibility Drives Cold Adaptation in Pseudoalteromonas haloplanktis TAC125 Globins
title_full_unstemmed Conformational Flexibility Drives Cold Adaptation in Pseudoalteromonas haloplanktis TAC125 Globins
title_sort Conformational Flexibility Drives Cold Adaptation in Pseudoalteromonas haloplanktis TAC125 Globins
dc.creator.none.fl_str_mv Giordano, Daniela
Boubeta, Fernando Martín
di Prisco, Guido
Estrin, Dario Ariel
Smulevich, Giulietta
Viappiani, Christiano
Verde, Cinzia
author Giordano, Daniela
author_facet Giordano, Daniela
Boubeta, Fernando Martín
di Prisco, Guido
Estrin, Dario Ariel
Smulevich, Giulietta
Viappiani, Christiano
Verde, Cinzia
author_role author
author2 Boubeta, Fernando Martín
di Prisco, Guido
Estrin, Dario Ariel
Smulevich, Giulietta
Viappiani, Christiano
Verde, Cinzia
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv BACTERIAL GLOBIN
HEME-POCKET FLEXIBILITY
HEXA-COORDINATION
OXIDATIVE/NITROSATIVE STRESS
THERMAL ADAPTATION
topic BACTERIAL GLOBIN
HEME-POCKET FLEXIBILITY
HEXA-COORDINATION
OXIDATIVE/NITROSATIVE STRESS
THERMAL ADAPTATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Significance: Temperature is one of the most important drivers in shaping protein adaptations. Many biochemical and physiological processes are influenced by temperature. Proteins and enzymes from organisms living at low temperature are less stable in comparison to high-temperature adapted proteins. The lower stability is generally due to greater conformational flexibility. Recent Advances: Adaptive changes in the structure of cold-adapted proteins may occur at subunit interfaces, distant from the active site, thus producing energy changes associated with conformational transitions transmitted to the active site by allosteric modulation, valid also for monomeric proteins in which tertiary structural changes may play an essential role. Critical Issues: Despite efforts, the current experimental and computational methods still fail to produce general principles on protein evolution, since many changes are protein and species dependent. Environmental constraints or other biological cellular signals may override the ancestral information included in the structure of the protein, thus introducing inaccuracy in estimates and predictions on the evolutionary adaptations of proteins in response to cold adaptation. Future Directions: In this review, we describe the studies and approaches used to investigate stability and flexibility in the cold-adapted globins of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. In fact, future research directions will be prescient on more detailed investigation of cold-adapted proteins and the role of fluctuations between different conformational states.
Fil: Giordano, Daniela. Institute Of Biosciences And Bioresources; Italia
Fil: Boubeta, Fernando Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: di Prisco, Guido. Institute Of Biosciences And Bioresources; Italia
Fil: Estrin, Dario Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Smulevich, Giulietta. Firenze University; Italia
Fil: Viappiani, Christiano. Università di Parma; Italia
Fil: Verde, Cinzia. Institute Of Biosciences And Bioresources; Italia
description Significance: Temperature is one of the most important drivers in shaping protein adaptations. Many biochemical and physiological processes are influenced by temperature. Proteins and enzymes from organisms living at low temperature are less stable in comparison to high-temperature adapted proteins. The lower stability is generally due to greater conformational flexibility. Recent Advances: Adaptive changes in the structure of cold-adapted proteins may occur at subunit interfaces, distant from the active site, thus producing energy changes associated with conformational transitions transmitted to the active site by allosteric modulation, valid also for monomeric proteins in which tertiary structural changes may play an essential role. Critical Issues: Despite efforts, the current experimental and computational methods still fail to produce general principles on protein evolution, since many changes are protein and species dependent. Environmental constraints or other biological cellular signals may override the ancestral information included in the structure of the protein, thus introducing inaccuracy in estimates and predictions on the evolutionary adaptations of proteins in response to cold adaptation. Future Directions: In this review, we describe the studies and approaches used to investigate stability and flexibility in the cold-adapted globins of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. In fact, future research directions will be prescient on more detailed investigation of cold-adapted proteins and the role of fluctuations between different conformational states.
publishDate 2019
dc.date.none.fl_str_mv 2019-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/123695
Giordano, Daniela; Boubeta, Fernando Martín; di Prisco, Guido; Estrin, Dario Ariel; Smulevich, Giulietta; et al.; Conformational Flexibility Drives Cold Adaptation in Pseudoalteromonas haloplanktis TAC125 Globins; Mary Ann Liebert; Antioxidants & Redox Signaling; 32; 6; 10-2019; 396-411
1523-0864
CONICET Digital
CONICET
url http://hdl.handle.net/11336/123695
identifier_str_mv Giordano, Daniela; Boubeta, Fernando Martín; di Prisco, Guido; Estrin, Dario Ariel; Smulevich, Giulietta; et al.; Conformational Flexibility Drives Cold Adaptation in Pseudoalteromonas haloplanktis TAC125 Globins; Mary Ann Liebert; Antioxidants & Redox Signaling; 32; 6; 10-2019; 396-411
1523-0864
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.liebertpub.com/doi/10.1089/ars.2019.7887
info:eu-repo/semantics/altIdentifier/doi/10.1089/ars.2019.7887
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Mary Ann Liebert
publisher.none.fl_str_mv Mary Ann Liebert
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614389826584576
score 13.070432