Molecular Dynamics Simulation of Laser Melting of Nanocrystalline Au

Autores
Lin, Zhibin; Leveugle, Elodie; Bringa, Eduardo Marcial; Zhigilei, Leonid V.
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The mechanisms and kinetics of short pulse laser melting of single crystal and nanocrystalline Au films are investigated on the basis of the results of simulations performed with a model combining the molecular dynamics method with a continuum-level description of the laser excitation and subsequent relaxation of the conduction band electrons. A description of the thermophysical properties of Au that accounts for the contribution of the thermal excitation of d band electrons is incorporated into the model and is found to play a major role in defining the kinetics of the melting process. The effect of nanocrystalline structure on the melting process is investigated for a broad range of laser fluences. At high fluences, the grain boundary melting in nanocrystalline films results in a moderate decrease of the size of the crystalline grains at the initial stage of the laser heating and is followed by a rapid (within several picoseconds) collapse of the crystal structure in the remaining crystalline parts of the film as soon as the lattice temperature exceeds the limit of the crystal stability against the onset of rapid homogeneous melting (the limit of superheating). At low laser fluences, close to the threshold for the complete melting of the film, the initiation of melting at grain boundaries can steer the melting process along the path where the melting continues below the equilibrium melting temperature and the crystalline regions shrink and disappear under conditions of substantial undercooling. The unusual melting behavior of nanocrystalline films is explained on the basis of thermodynamic analysis of the stability of small crystalline clusters surrounded by undercooled liquid.
Fil: Lin, Zhibin. University of Virginia; Estados Unidos
Fil: Leveugle, Elodie. University of Virginia; Estados Unidos
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Zhigilei, Leonid V.. University of Virginia; Estados Unidos
Materia
nonferrous metals
alloys
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/278595

id CONICETDig_3e829a5ea434f8c1e05e28bf686f7274
oai_identifier_str oai:ri.conicet.gov.ar:11336/278595
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Molecular Dynamics Simulation of Laser Melting of Nanocrystalline AuLin, ZhibinLeveugle, ElodieBringa, Eduardo MarcialZhigilei, Leonid V.nonferrous metalsalloyshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The mechanisms and kinetics of short pulse laser melting of single crystal and nanocrystalline Au films are investigated on the basis of the results of simulations performed with a model combining the molecular dynamics method with a continuum-level description of the laser excitation and subsequent relaxation of the conduction band electrons. A description of the thermophysical properties of Au that accounts for the contribution of the thermal excitation of d band electrons is incorporated into the model and is found to play a major role in defining the kinetics of the melting process. The effect of nanocrystalline structure on the melting process is investigated for a broad range of laser fluences. At high fluences, the grain boundary melting in nanocrystalline films results in a moderate decrease of the size of the crystalline grains at the initial stage of the laser heating and is followed by a rapid (within several picoseconds) collapse of the crystal structure in the remaining crystalline parts of the film as soon as the lattice temperature exceeds the limit of the crystal stability against the onset of rapid homogeneous melting (the limit of superheating). At low laser fluences, close to the threshold for the complete melting of the film, the initiation of melting at grain boundaries can steer the melting process along the path where the melting continues below the equilibrium melting temperature and the crystalline regions shrink and disappear under conditions of substantial undercooling. The unusual melting behavior of nanocrystalline films is explained on the basis of thermodynamic analysis of the stability of small crystalline clusters surrounded by undercooled liquid.Fil: Lin, Zhibin. University of Virginia; Estados UnidosFil: Leveugle, Elodie. University of Virginia; Estados UnidosFil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Zhigilei, Leonid V.. University of Virginia; Estados UnidosAmerican Chemical Society2010-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/278595Lin, Zhibin; Leveugle, Elodie; Bringa, Eduardo Marcial; Zhigilei, Leonid V.; Molecular Dynamics Simulation of Laser Melting of Nanocrystalline Au; American Chemical Society; Journal of Physical Chemistry C; 114; 12; 12-2010; 5686-56991932-7447CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/jp909328qinfo:eu-repo/semantics/altIdentifier/doi/10.1021/jp909328qinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2026-01-14T11:44:22Zoai:ri.conicet.gov.ar:11336/278595instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982026-01-14 11:44:22.557CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Molecular Dynamics Simulation of Laser Melting of Nanocrystalline Au
title Molecular Dynamics Simulation of Laser Melting of Nanocrystalline Au
spellingShingle Molecular Dynamics Simulation of Laser Melting of Nanocrystalline Au
Lin, Zhibin
nonferrous metals
alloys
title_short Molecular Dynamics Simulation of Laser Melting of Nanocrystalline Au
title_full Molecular Dynamics Simulation of Laser Melting of Nanocrystalline Au
title_fullStr Molecular Dynamics Simulation of Laser Melting of Nanocrystalline Au
title_full_unstemmed Molecular Dynamics Simulation of Laser Melting of Nanocrystalline Au
title_sort Molecular Dynamics Simulation of Laser Melting of Nanocrystalline Au
dc.creator.none.fl_str_mv Lin, Zhibin
Leveugle, Elodie
Bringa, Eduardo Marcial
Zhigilei, Leonid V.
author Lin, Zhibin
author_facet Lin, Zhibin
Leveugle, Elodie
Bringa, Eduardo Marcial
Zhigilei, Leonid V.
author_role author
author2 Leveugle, Elodie
Bringa, Eduardo Marcial
Zhigilei, Leonid V.
author2_role author
author
author
dc.subject.none.fl_str_mv nonferrous metals
alloys
topic nonferrous metals
alloys
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The mechanisms and kinetics of short pulse laser melting of single crystal and nanocrystalline Au films are investigated on the basis of the results of simulations performed with a model combining the molecular dynamics method with a continuum-level description of the laser excitation and subsequent relaxation of the conduction band electrons. A description of the thermophysical properties of Au that accounts for the contribution of the thermal excitation of d band electrons is incorporated into the model and is found to play a major role in defining the kinetics of the melting process. The effect of nanocrystalline structure on the melting process is investigated for a broad range of laser fluences. At high fluences, the grain boundary melting in nanocrystalline films results in a moderate decrease of the size of the crystalline grains at the initial stage of the laser heating and is followed by a rapid (within several picoseconds) collapse of the crystal structure in the remaining crystalline parts of the film as soon as the lattice temperature exceeds the limit of the crystal stability against the onset of rapid homogeneous melting (the limit of superheating). At low laser fluences, close to the threshold for the complete melting of the film, the initiation of melting at grain boundaries can steer the melting process along the path where the melting continues below the equilibrium melting temperature and the crystalline regions shrink and disappear under conditions of substantial undercooling. The unusual melting behavior of nanocrystalline films is explained on the basis of thermodynamic analysis of the stability of small crystalline clusters surrounded by undercooled liquid.
Fil: Lin, Zhibin. University of Virginia; Estados Unidos
Fil: Leveugle, Elodie. University of Virginia; Estados Unidos
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Zhigilei, Leonid V.. University of Virginia; Estados Unidos
description The mechanisms and kinetics of short pulse laser melting of single crystal and nanocrystalline Au films are investigated on the basis of the results of simulations performed with a model combining the molecular dynamics method with a continuum-level description of the laser excitation and subsequent relaxation of the conduction band electrons. A description of the thermophysical properties of Au that accounts for the contribution of the thermal excitation of d band electrons is incorporated into the model and is found to play a major role in defining the kinetics of the melting process. The effect of nanocrystalline structure on the melting process is investigated for a broad range of laser fluences. At high fluences, the grain boundary melting in nanocrystalline films results in a moderate decrease of the size of the crystalline grains at the initial stage of the laser heating and is followed by a rapid (within several picoseconds) collapse of the crystal structure in the remaining crystalline parts of the film as soon as the lattice temperature exceeds the limit of the crystal stability against the onset of rapid homogeneous melting (the limit of superheating). At low laser fluences, close to the threshold for the complete melting of the film, the initiation of melting at grain boundaries can steer the melting process along the path where the melting continues below the equilibrium melting temperature and the crystalline regions shrink and disappear under conditions of substantial undercooling. The unusual melting behavior of nanocrystalline films is explained on the basis of thermodynamic analysis of the stability of small crystalline clusters surrounded by undercooled liquid.
publishDate 2010
dc.date.none.fl_str_mv 2010-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/278595
Lin, Zhibin; Leveugle, Elodie; Bringa, Eduardo Marcial; Zhigilei, Leonid V.; Molecular Dynamics Simulation of Laser Melting of Nanocrystalline Au; American Chemical Society; Journal of Physical Chemistry C; 114; 12; 12-2010; 5686-5699
1932-7447
CONICET Digital
CONICET
url http://hdl.handle.net/11336/278595
identifier_str_mv Lin, Zhibin; Leveugle, Elodie; Bringa, Eduardo Marcial; Zhigilei, Leonid V.; Molecular Dynamics Simulation of Laser Melting of Nanocrystalline Au; American Chemical Society; Journal of Physical Chemistry C; 114; 12; 12-2010; 5686-5699
1932-7447
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/jp909328q
info:eu-repo/semantics/altIdentifier/doi/10.1021/jp909328q
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1854320813755334656
score 13.113929