Ultrafast electronic energy relaxation in a conjugated dendrimer leading to inter-branch energy redistribution

Autores
Ondarse Alvarez, Dianelys; Kömürlü, S.; Roitberg, Adrián; Pierdominici Sottile, Gustavo; Tretiak, S.; Fernández Alberti, Sebastián; Kleiman, V. D.
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Dendrimers are arrays of coupled chromophores, where the energy of each unit depends on its structure and conformation. The light harvesting and energy funneling properties are strongly dependent on their highly branched conjugated architecture. Herein, the photoexcitation and subsequent ultrafast electronic energy relaxation and redistribution of a first generation dendrimer (1) are analyzed combining theoretical and experimental studies. Dendrimer 1 consists of three linear phenylene-ethynylene (PE) units, or branches, attached in the meta position to a central group opening up the possibility of inter-branch energy transfer. Excited state dynamics are explored using both time-resolved spectroscopy and non-adiabatic excited state molecular dynamics simulations. Our results indicate a subpicosecond loss of anisotropy due to an initial excitation into several states with different spatial localizations, followed by exciton self-trapping on different units. This exciton hops between branches. The absence of an energy gradient leads to an ultrafast energy redistribution among isoenergetic chromophore units. At long times we observe similar probabilities for each branch to retain significant contributions of the transition density of the lowest electronic excited-state. The observed unpolarized emission is attributed to the contraction of the electronic wavefunction onto a single branch with frequent interbranch hops, and not to its delocalization over the whole dendrimer.
Fil: Ondarse Alvarez, Dianelys. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina
Fil: Kömürlü, S.. University of Florida; Estados Unidos
Fil: Roitberg, Adrián. University of Florida; Estados Unidos
Fil: Pierdominici Sottile, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina
Fil: Tretiak, S.. Los Alamos National Laboratory; Estados Unidos
Fil: Fernández Alberti, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina
Fil: Kleiman, V. D.. University of Florida; Estados Unidos
Materia
Molecular Dynamics
Amber
Na-Esmd
Dendrimers
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/72183

id CONICETDig_3e199bb43e5a8348f064a60c3e70e2b9
oai_identifier_str oai:ri.conicet.gov.ar:11336/72183
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Ultrafast electronic energy relaxation in a conjugated dendrimer leading to inter-branch energy redistributionOndarse Alvarez, DianelysKömürlü, S.Roitberg, AdriánPierdominici Sottile, GustavoTretiak, S.Fernández Alberti, SebastiánKleiman, V. D.Molecular DynamicsAmberNa-EsmdDendrimershttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Dendrimers are arrays of coupled chromophores, where the energy of each unit depends on its structure and conformation. The light harvesting and energy funneling properties are strongly dependent on their highly branched conjugated architecture. Herein, the photoexcitation and subsequent ultrafast electronic energy relaxation and redistribution of a first generation dendrimer (1) are analyzed combining theoretical and experimental studies. Dendrimer 1 consists of three linear phenylene-ethynylene (PE) units, or branches, attached in the meta position to a central group opening up the possibility of inter-branch energy transfer. Excited state dynamics are explored using both time-resolved spectroscopy and non-adiabatic excited state molecular dynamics simulations. Our results indicate a subpicosecond loss of anisotropy due to an initial excitation into several states with different spatial localizations, followed by exciton self-trapping on different units. This exciton hops between branches. The absence of an energy gradient leads to an ultrafast energy redistribution among isoenergetic chromophore units. At long times we observe similar probabilities for each branch to retain significant contributions of the transition density of the lowest electronic excited-state. The observed unpolarized emission is attributed to the contraction of the electronic wavefunction onto a single branch with frequent interbranch hops, and not to its delocalization over the whole dendrimer.Fil: Ondarse Alvarez, Dianelys. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; ArgentinaFil: Kömürlü, S.. University of Florida; Estados UnidosFil: Roitberg, Adrián. University of Florida; Estados UnidosFil: Pierdominici Sottile, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; ArgentinaFil: Tretiak, S.. Los Alamos National Laboratory; Estados UnidosFil: Fernández Alberti, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; ArgentinaFil: Kleiman, V. D.. University of Florida; Estados UnidosRoyal Society of Chemistry2016-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/72183Ondarse Alvarez, Dianelys; Kömürlü, S.; Roitberg, Adrián; Pierdominici Sottile, Gustavo; Tretiak, S.; et al.; Ultrafast electronic energy relaxation in a conjugated dendrimer leading to inter-branch energy redistribution; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 18; 36; 8-2016; 25080-250891463-9076CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1039/C6CP04448Dinfo:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/Content/ArticleLanding/2016/CP/C6CP04448Dinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:17:36Zoai:ri.conicet.gov.ar:11336/72183instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:17:36.536CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Ultrafast electronic energy relaxation in a conjugated dendrimer leading to inter-branch energy redistribution
title Ultrafast electronic energy relaxation in a conjugated dendrimer leading to inter-branch energy redistribution
spellingShingle Ultrafast electronic energy relaxation in a conjugated dendrimer leading to inter-branch energy redistribution
Ondarse Alvarez, Dianelys
Molecular Dynamics
Amber
Na-Esmd
Dendrimers
title_short Ultrafast electronic energy relaxation in a conjugated dendrimer leading to inter-branch energy redistribution
title_full Ultrafast electronic energy relaxation in a conjugated dendrimer leading to inter-branch energy redistribution
title_fullStr Ultrafast electronic energy relaxation in a conjugated dendrimer leading to inter-branch energy redistribution
title_full_unstemmed Ultrafast electronic energy relaxation in a conjugated dendrimer leading to inter-branch energy redistribution
title_sort Ultrafast electronic energy relaxation in a conjugated dendrimer leading to inter-branch energy redistribution
dc.creator.none.fl_str_mv Ondarse Alvarez, Dianelys
Kömürlü, S.
Roitberg, Adrián
Pierdominici Sottile, Gustavo
Tretiak, S.
Fernández Alberti, Sebastián
Kleiman, V. D.
author Ondarse Alvarez, Dianelys
author_facet Ondarse Alvarez, Dianelys
Kömürlü, S.
Roitberg, Adrián
Pierdominici Sottile, Gustavo
Tretiak, S.
Fernández Alberti, Sebastián
Kleiman, V. D.
author_role author
author2 Kömürlü, S.
Roitberg, Adrián
Pierdominici Sottile, Gustavo
Tretiak, S.
Fernández Alberti, Sebastián
Kleiman, V. D.
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Molecular Dynamics
Amber
Na-Esmd
Dendrimers
topic Molecular Dynamics
Amber
Na-Esmd
Dendrimers
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Dendrimers are arrays of coupled chromophores, where the energy of each unit depends on its structure and conformation. The light harvesting and energy funneling properties are strongly dependent on their highly branched conjugated architecture. Herein, the photoexcitation and subsequent ultrafast electronic energy relaxation and redistribution of a first generation dendrimer (1) are analyzed combining theoretical and experimental studies. Dendrimer 1 consists of three linear phenylene-ethynylene (PE) units, or branches, attached in the meta position to a central group opening up the possibility of inter-branch energy transfer. Excited state dynamics are explored using both time-resolved spectroscopy and non-adiabatic excited state molecular dynamics simulations. Our results indicate a subpicosecond loss of anisotropy due to an initial excitation into several states with different spatial localizations, followed by exciton self-trapping on different units. This exciton hops between branches. The absence of an energy gradient leads to an ultrafast energy redistribution among isoenergetic chromophore units. At long times we observe similar probabilities for each branch to retain significant contributions of the transition density of the lowest electronic excited-state. The observed unpolarized emission is attributed to the contraction of the electronic wavefunction onto a single branch with frequent interbranch hops, and not to its delocalization over the whole dendrimer.
Fil: Ondarse Alvarez, Dianelys. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina
Fil: Kömürlü, S.. University of Florida; Estados Unidos
Fil: Roitberg, Adrián. University of Florida; Estados Unidos
Fil: Pierdominici Sottile, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina
Fil: Tretiak, S.. Los Alamos National Laboratory; Estados Unidos
Fil: Fernández Alberti, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina
Fil: Kleiman, V. D.. University of Florida; Estados Unidos
description Dendrimers are arrays of coupled chromophores, where the energy of each unit depends on its structure and conformation. The light harvesting and energy funneling properties are strongly dependent on their highly branched conjugated architecture. Herein, the photoexcitation and subsequent ultrafast electronic energy relaxation and redistribution of a first generation dendrimer (1) are analyzed combining theoretical and experimental studies. Dendrimer 1 consists of three linear phenylene-ethynylene (PE) units, or branches, attached in the meta position to a central group opening up the possibility of inter-branch energy transfer. Excited state dynamics are explored using both time-resolved spectroscopy and non-adiabatic excited state molecular dynamics simulations. Our results indicate a subpicosecond loss of anisotropy due to an initial excitation into several states with different spatial localizations, followed by exciton self-trapping on different units. This exciton hops between branches. The absence of an energy gradient leads to an ultrafast energy redistribution among isoenergetic chromophore units. At long times we observe similar probabilities for each branch to retain significant contributions of the transition density of the lowest electronic excited-state. The observed unpolarized emission is attributed to the contraction of the electronic wavefunction onto a single branch with frequent interbranch hops, and not to its delocalization over the whole dendrimer.
publishDate 2016
dc.date.none.fl_str_mv 2016-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/72183
Ondarse Alvarez, Dianelys; Kömürlü, S.; Roitberg, Adrián; Pierdominici Sottile, Gustavo; Tretiak, S.; et al.; Ultrafast electronic energy relaxation in a conjugated dendrimer leading to inter-branch energy redistribution; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 18; 36; 8-2016; 25080-25089
1463-9076
CONICET Digital
CONICET
url http://hdl.handle.net/11336/72183
identifier_str_mv Ondarse Alvarez, Dianelys; Kömürlü, S.; Roitberg, Adrián; Pierdominici Sottile, Gustavo; Tretiak, S.; et al.; Ultrafast electronic energy relaxation in a conjugated dendrimer leading to inter-branch energy redistribution; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 18; 36; 8-2016; 25080-25089
1463-9076
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1039/C6CP04448D
info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/Content/ArticleLanding/2016/CP/C6CP04448D
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980960954482688
score 12.993085