Ultrafast electronic energy relaxation in a conjugated dendrimer leading to inter-branch energy redistribution
- Autores
- Ondarse Alvarez, Dianelys; Kömürlü, S.; Roitberg, Adrián; Pierdominici Sottile, Gustavo; Tretiak, S.; Fernández Alberti, Sebastián; Kleiman, V. D.
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Dendrimers are arrays of coupled chromophores, where the energy of each unit depends on its structure and conformation. The light harvesting and energy funneling properties are strongly dependent on their highly branched conjugated architecture. Herein, the photoexcitation and subsequent ultrafast electronic energy relaxation and redistribution of a first generation dendrimer (1) are analyzed combining theoretical and experimental studies. Dendrimer 1 consists of three linear phenylene-ethynylene (PE) units, or branches, attached in the meta position to a central group opening up the possibility of inter-branch energy transfer. Excited state dynamics are explored using both time-resolved spectroscopy and non-adiabatic excited state molecular dynamics simulations. Our results indicate a subpicosecond loss of anisotropy due to an initial excitation into several states with different spatial localizations, followed by exciton self-trapping on different units. This exciton hops between branches. The absence of an energy gradient leads to an ultrafast energy redistribution among isoenergetic chromophore units. At long times we observe similar probabilities for each branch to retain significant contributions of the transition density of the lowest electronic excited-state. The observed unpolarized emission is attributed to the contraction of the electronic wavefunction onto a single branch with frequent interbranch hops, and not to its delocalization over the whole dendrimer.
Fil: Ondarse Alvarez, Dianelys. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina
Fil: Kömürlü, S.. University of Florida; Estados Unidos
Fil: Roitberg, Adrián. University of Florida; Estados Unidos
Fil: Pierdominici Sottile, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina
Fil: Tretiak, S.. Los Alamos National Laboratory; Estados Unidos
Fil: Fernández Alberti, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina
Fil: Kleiman, V. D.. University of Florida; Estados Unidos - Materia
-
Molecular Dynamics
Amber
Na-Esmd
Dendrimers - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/72183
Ver los metadatos del registro completo
id |
CONICETDig_3e199bb43e5a8348f064a60c3e70e2b9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/72183 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Ultrafast electronic energy relaxation in a conjugated dendrimer leading to inter-branch energy redistributionOndarse Alvarez, DianelysKömürlü, S.Roitberg, AdriánPierdominici Sottile, GustavoTretiak, S.Fernández Alberti, SebastiánKleiman, V. D.Molecular DynamicsAmberNa-EsmdDendrimershttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Dendrimers are arrays of coupled chromophores, where the energy of each unit depends on its structure and conformation. The light harvesting and energy funneling properties are strongly dependent on their highly branched conjugated architecture. Herein, the photoexcitation and subsequent ultrafast electronic energy relaxation and redistribution of a first generation dendrimer (1) are analyzed combining theoretical and experimental studies. Dendrimer 1 consists of three linear phenylene-ethynylene (PE) units, or branches, attached in the meta position to a central group opening up the possibility of inter-branch energy transfer. Excited state dynamics are explored using both time-resolved spectroscopy and non-adiabatic excited state molecular dynamics simulations. Our results indicate a subpicosecond loss of anisotropy due to an initial excitation into several states with different spatial localizations, followed by exciton self-trapping on different units. This exciton hops between branches. The absence of an energy gradient leads to an ultrafast energy redistribution among isoenergetic chromophore units. At long times we observe similar probabilities for each branch to retain significant contributions of the transition density of the lowest electronic excited-state. The observed unpolarized emission is attributed to the contraction of the electronic wavefunction onto a single branch with frequent interbranch hops, and not to its delocalization over the whole dendrimer.Fil: Ondarse Alvarez, Dianelys. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; ArgentinaFil: Kömürlü, S.. University of Florida; Estados UnidosFil: Roitberg, Adrián. University of Florida; Estados UnidosFil: Pierdominici Sottile, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; ArgentinaFil: Tretiak, S.. Los Alamos National Laboratory; Estados UnidosFil: Fernández Alberti, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; ArgentinaFil: Kleiman, V. D.. University of Florida; Estados UnidosRoyal Society of Chemistry2016-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/72183Ondarse Alvarez, Dianelys; Kömürlü, S.; Roitberg, Adrián; Pierdominici Sottile, Gustavo; Tretiak, S.; et al.; Ultrafast electronic energy relaxation in a conjugated dendrimer leading to inter-branch energy redistribution; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 18; 36; 8-2016; 25080-250891463-9076CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1039/C6CP04448Dinfo:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/Content/ArticleLanding/2016/CP/C6CP04448Dinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:17:36Zoai:ri.conicet.gov.ar:11336/72183instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:17:36.536CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Ultrafast electronic energy relaxation in a conjugated dendrimer leading to inter-branch energy redistribution |
title |
Ultrafast electronic energy relaxation in a conjugated dendrimer leading to inter-branch energy redistribution |
spellingShingle |
Ultrafast electronic energy relaxation in a conjugated dendrimer leading to inter-branch energy redistribution Ondarse Alvarez, Dianelys Molecular Dynamics Amber Na-Esmd Dendrimers |
title_short |
Ultrafast electronic energy relaxation in a conjugated dendrimer leading to inter-branch energy redistribution |
title_full |
Ultrafast electronic energy relaxation in a conjugated dendrimer leading to inter-branch energy redistribution |
title_fullStr |
Ultrafast electronic energy relaxation in a conjugated dendrimer leading to inter-branch energy redistribution |
title_full_unstemmed |
Ultrafast electronic energy relaxation in a conjugated dendrimer leading to inter-branch energy redistribution |
title_sort |
Ultrafast electronic energy relaxation in a conjugated dendrimer leading to inter-branch energy redistribution |
dc.creator.none.fl_str_mv |
Ondarse Alvarez, Dianelys Kömürlü, S. Roitberg, Adrián Pierdominici Sottile, Gustavo Tretiak, S. Fernández Alberti, Sebastián Kleiman, V. D. |
author |
Ondarse Alvarez, Dianelys |
author_facet |
Ondarse Alvarez, Dianelys Kömürlü, S. Roitberg, Adrián Pierdominici Sottile, Gustavo Tretiak, S. Fernández Alberti, Sebastián Kleiman, V. D. |
author_role |
author |
author2 |
Kömürlü, S. Roitberg, Adrián Pierdominici Sottile, Gustavo Tretiak, S. Fernández Alberti, Sebastián Kleiman, V. D. |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Molecular Dynamics Amber Na-Esmd Dendrimers |
topic |
Molecular Dynamics Amber Na-Esmd Dendrimers |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Dendrimers are arrays of coupled chromophores, where the energy of each unit depends on its structure and conformation. The light harvesting and energy funneling properties are strongly dependent on their highly branched conjugated architecture. Herein, the photoexcitation and subsequent ultrafast electronic energy relaxation and redistribution of a first generation dendrimer (1) are analyzed combining theoretical and experimental studies. Dendrimer 1 consists of three linear phenylene-ethynylene (PE) units, or branches, attached in the meta position to a central group opening up the possibility of inter-branch energy transfer. Excited state dynamics are explored using both time-resolved spectroscopy and non-adiabatic excited state molecular dynamics simulations. Our results indicate a subpicosecond loss of anisotropy due to an initial excitation into several states with different spatial localizations, followed by exciton self-trapping on different units. This exciton hops between branches. The absence of an energy gradient leads to an ultrafast energy redistribution among isoenergetic chromophore units. At long times we observe similar probabilities for each branch to retain significant contributions of the transition density of the lowest electronic excited-state. The observed unpolarized emission is attributed to the contraction of the electronic wavefunction onto a single branch with frequent interbranch hops, and not to its delocalization over the whole dendrimer. Fil: Ondarse Alvarez, Dianelys. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina Fil: Kömürlü, S.. University of Florida; Estados Unidos Fil: Roitberg, Adrián. University of Florida; Estados Unidos Fil: Pierdominici Sottile, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina Fil: Tretiak, S.. Los Alamos National Laboratory; Estados Unidos Fil: Fernández Alberti, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina Fil: Kleiman, V. D.. University of Florida; Estados Unidos |
description |
Dendrimers are arrays of coupled chromophores, where the energy of each unit depends on its structure and conformation. The light harvesting and energy funneling properties are strongly dependent on their highly branched conjugated architecture. Herein, the photoexcitation and subsequent ultrafast electronic energy relaxation and redistribution of a first generation dendrimer (1) are analyzed combining theoretical and experimental studies. Dendrimer 1 consists of three linear phenylene-ethynylene (PE) units, or branches, attached in the meta position to a central group opening up the possibility of inter-branch energy transfer. Excited state dynamics are explored using both time-resolved spectroscopy and non-adiabatic excited state molecular dynamics simulations. Our results indicate a subpicosecond loss of anisotropy due to an initial excitation into several states with different spatial localizations, followed by exciton self-trapping on different units. This exciton hops between branches. The absence of an energy gradient leads to an ultrafast energy redistribution among isoenergetic chromophore units. At long times we observe similar probabilities for each branch to retain significant contributions of the transition density of the lowest electronic excited-state. The observed unpolarized emission is attributed to the contraction of the electronic wavefunction onto a single branch with frequent interbranch hops, and not to its delocalization over the whole dendrimer. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/72183 Ondarse Alvarez, Dianelys; Kömürlü, S.; Roitberg, Adrián; Pierdominici Sottile, Gustavo; Tretiak, S.; et al.; Ultrafast electronic energy relaxation in a conjugated dendrimer leading to inter-branch energy redistribution; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 18; 36; 8-2016; 25080-25089 1463-9076 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/72183 |
identifier_str_mv |
Ondarse Alvarez, Dianelys; Kömürlü, S.; Roitberg, Adrián; Pierdominici Sottile, Gustavo; Tretiak, S.; et al.; Ultrafast electronic energy relaxation in a conjugated dendrimer leading to inter-branch energy redistribution; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 18; 36; 8-2016; 25080-25089 1463-9076 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1039/C6CP04448D info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/Content/ArticleLanding/2016/CP/C6CP04448D |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Royal Society of Chemistry |
publisher.none.fl_str_mv |
Royal Society of Chemistry |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980960954482688 |
score |
12.993085 |