Nfinder: automatic inference of cell neighborhood in 2D and 3D using nuclear markers
- Autores
- Moretti, Bruno; Rodriguez Alvarez, Santiago Nicolas; Grecco, Hernan Edgardo
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background: In tissues and organisms, the coordination of neighboring cells is essential to maintain their properties and functions. Therefore, knowing which cells are adjacent is crucial to understand biological processes that involve physical interactions among them, e.g. cell migration and proliferation. In addition, some signaling pathways, such as Notch or extrinsic apoptosis, are highly dependent on cell–cell communication. While this is straightforward to obtain from membrane images, nuclei labelling is much more ubiquitous for technical reasons. However, there are no automatic and robust methods to find neighboring cells based only on nuclear markers. Results: In this work, we describe Nfinder, a method to assess the cell’s local neighborhood from images with nuclei labeling. To achieve this goal, we approximate the cell–cell interaction graph by the Delaunay triangulation of nuclei centroids. Then, links are filtered by automatic thresholding in cell–cell distance (pairwise interaction) and the maximum angle that a pair of cells subtends with shared neighbors (non-pairwise interaction). We systematically characterized the detection performance by applying Nfinder to publicly available datasets from Drosophila melanogaster, Tribolium castaneum, Arabidopsis thaliana and C. elegans. In each case, the result of the algorithm was compared to a cell neighbor graph generated by manually annotating the original dataset. On average, our method detected 95% of true neighbors, with only 6% of false discoveries. Remarkably, our findings indicate that taking into account non-pairwise interactions might increase the Positive Predictive Value up to + 11.5%. Conclusion: Nfinder is the first robust and automatic method for estimating neighboring cells in 2D and 3D based only on nuclear markers and without any free parameters. Using this tool, we found that taking non-pairwise interactions into account improves the detection performance significantly. We believe that using our method might improve the effectiveness of other workflows to study cell–cell interactions from microscopy images. Finally, we also provide a reference implementation in Python and an easy-to-use napari plugin.
Fil: Moretti, Bruno. University of California at Berkeley; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Rodriguez Alvarez, Santiago Nicolas. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Grecco, Hernan Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina - Materia
-
CELL–CELL INTERACTIONS
DELAUNAY TRIANGULATION
IMAGE ANALYSIS
MICROSCOPY
NEIGHBORING CELLS
TISSUES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/228030
Ver los metadatos del registro completo
| id |
CONICETDig_3d715451a5a82d75bb94aa1b0b10f5a9 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/228030 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Nfinder: automatic inference of cell neighborhood in 2D and 3D using nuclear markersMoretti, BrunoRodriguez Alvarez, Santiago NicolasGrecco, Hernan EdgardoCELL–CELL INTERACTIONSDELAUNAY TRIANGULATIONIMAGE ANALYSISMICROSCOPYNEIGHBORING CELLSTISSUEShttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Background: In tissues and organisms, the coordination of neighboring cells is essential to maintain their properties and functions. Therefore, knowing which cells are adjacent is crucial to understand biological processes that involve physical interactions among them, e.g. cell migration and proliferation. In addition, some signaling pathways, such as Notch or extrinsic apoptosis, are highly dependent on cell–cell communication. While this is straightforward to obtain from membrane images, nuclei labelling is much more ubiquitous for technical reasons. However, there are no automatic and robust methods to find neighboring cells based only on nuclear markers. Results: In this work, we describe Nfinder, a method to assess the cell’s local neighborhood from images with nuclei labeling. To achieve this goal, we approximate the cell–cell interaction graph by the Delaunay triangulation of nuclei centroids. Then, links are filtered by automatic thresholding in cell–cell distance (pairwise interaction) and the maximum angle that a pair of cells subtends with shared neighbors (non-pairwise interaction). We systematically characterized the detection performance by applying Nfinder to publicly available datasets from Drosophila melanogaster, Tribolium castaneum, Arabidopsis thaliana and C. elegans. In each case, the result of the algorithm was compared to a cell neighbor graph generated by manually annotating the original dataset. On average, our method detected 95% of true neighbors, with only 6% of false discoveries. Remarkably, our findings indicate that taking into account non-pairwise interactions might increase the Positive Predictive Value up to + 11.5%. Conclusion: Nfinder is the first robust and automatic method for estimating neighboring cells in 2D and 3D based only on nuclear markers and without any free parameters. Using this tool, we found that taking non-pairwise interactions into account improves the detection performance significantly. We believe that using our method might improve the effectiveness of other workflows to study cell–cell interactions from microscopy images. Finally, we also provide a reference implementation in Python and an easy-to-use napari plugin.Fil: Moretti, Bruno. University of California at Berkeley; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Rodriguez Alvarez, Santiago Nicolas. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Grecco, Hernan Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaBioMed Central2023-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/228030Moretti, Bruno; Rodriguez Alvarez, Santiago Nicolas; Grecco, Hernan Edgardo; Nfinder: automatic inference of cell neighborhood in 2D and 3D using nuclear markers; BioMed Central; BMC Bioinformatics; 24; 1; 12-2023; 1-121471-2105CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1186/s12859-023-05284-2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:22:49Zoai:ri.conicet.gov.ar:11336/228030instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:22:49.865CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Nfinder: automatic inference of cell neighborhood in 2D and 3D using nuclear markers |
| title |
Nfinder: automatic inference of cell neighborhood in 2D and 3D using nuclear markers |
| spellingShingle |
Nfinder: automatic inference of cell neighborhood in 2D and 3D using nuclear markers Moretti, Bruno CELL–CELL INTERACTIONS DELAUNAY TRIANGULATION IMAGE ANALYSIS MICROSCOPY NEIGHBORING CELLS TISSUES |
| title_short |
Nfinder: automatic inference of cell neighborhood in 2D and 3D using nuclear markers |
| title_full |
Nfinder: automatic inference of cell neighborhood in 2D and 3D using nuclear markers |
| title_fullStr |
Nfinder: automatic inference of cell neighborhood in 2D and 3D using nuclear markers |
| title_full_unstemmed |
Nfinder: automatic inference of cell neighborhood in 2D and 3D using nuclear markers |
| title_sort |
Nfinder: automatic inference of cell neighborhood in 2D and 3D using nuclear markers |
| dc.creator.none.fl_str_mv |
Moretti, Bruno Rodriguez Alvarez, Santiago Nicolas Grecco, Hernan Edgardo |
| author |
Moretti, Bruno |
| author_facet |
Moretti, Bruno Rodriguez Alvarez, Santiago Nicolas Grecco, Hernan Edgardo |
| author_role |
author |
| author2 |
Rodriguez Alvarez, Santiago Nicolas Grecco, Hernan Edgardo |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
CELL–CELL INTERACTIONS DELAUNAY TRIANGULATION IMAGE ANALYSIS MICROSCOPY NEIGHBORING CELLS TISSUES |
| topic |
CELL–CELL INTERACTIONS DELAUNAY TRIANGULATION IMAGE ANALYSIS MICROSCOPY NEIGHBORING CELLS TISSUES |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Background: In tissues and organisms, the coordination of neighboring cells is essential to maintain their properties and functions. Therefore, knowing which cells are adjacent is crucial to understand biological processes that involve physical interactions among them, e.g. cell migration and proliferation. In addition, some signaling pathways, such as Notch or extrinsic apoptosis, are highly dependent on cell–cell communication. While this is straightforward to obtain from membrane images, nuclei labelling is much more ubiquitous for technical reasons. However, there are no automatic and robust methods to find neighboring cells based only on nuclear markers. Results: In this work, we describe Nfinder, a method to assess the cell’s local neighborhood from images with nuclei labeling. To achieve this goal, we approximate the cell–cell interaction graph by the Delaunay triangulation of nuclei centroids. Then, links are filtered by automatic thresholding in cell–cell distance (pairwise interaction) and the maximum angle that a pair of cells subtends with shared neighbors (non-pairwise interaction). We systematically characterized the detection performance by applying Nfinder to publicly available datasets from Drosophila melanogaster, Tribolium castaneum, Arabidopsis thaliana and C. elegans. In each case, the result of the algorithm was compared to a cell neighbor graph generated by manually annotating the original dataset. On average, our method detected 95% of true neighbors, with only 6% of false discoveries. Remarkably, our findings indicate that taking into account non-pairwise interactions might increase the Positive Predictive Value up to + 11.5%. Conclusion: Nfinder is the first robust and automatic method for estimating neighboring cells in 2D and 3D based only on nuclear markers and without any free parameters. Using this tool, we found that taking non-pairwise interactions into account improves the detection performance significantly. We believe that using our method might improve the effectiveness of other workflows to study cell–cell interactions from microscopy images. Finally, we also provide a reference implementation in Python and an easy-to-use napari plugin. Fil: Moretti, Bruno. University of California at Berkeley; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Rodriguez Alvarez, Santiago Nicolas. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina Fil: Grecco, Hernan Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina |
| description |
Background: In tissues and organisms, the coordination of neighboring cells is essential to maintain their properties and functions. Therefore, knowing which cells are adjacent is crucial to understand biological processes that involve physical interactions among them, e.g. cell migration and proliferation. In addition, some signaling pathways, such as Notch or extrinsic apoptosis, are highly dependent on cell–cell communication. While this is straightforward to obtain from membrane images, nuclei labelling is much more ubiquitous for technical reasons. However, there are no automatic and robust methods to find neighboring cells based only on nuclear markers. Results: In this work, we describe Nfinder, a method to assess the cell’s local neighborhood from images with nuclei labeling. To achieve this goal, we approximate the cell–cell interaction graph by the Delaunay triangulation of nuclei centroids. Then, links are filtered by automatic thresholding in cell–cell distance (pairwise interaction) and the maximum angle that a pair of cells subtends with shared neighbors (non-pairwise interaction). We systematically characterized the detection performance by applying Nfinder to publicly available datasets from Drosophila melanogaster, Tribolium castaneum, Arabidopsis thaliana and C. elegans. In each case, the result of the algorithm was compared to a cell neighbor graph generated by manually annotating the original dataset. On average, our method detected 95% of true neighbors, with only 6% of false discoveries. Remarkably, our findings indicate that taking into account non-pairwise interactions might increase the Positive Predictive Value up to + 11.5%. Conclusion: Nfinder is the first robust and automatic method for estimating neighboring cells in 2D and 3D based only on nuclear markers and without any free parameters. Using this tool, we found that taking non-pairwise interactions into account improves the detection performance significantly. We believe that using our method might improve the effectiveness of other workflows to study cell–cell interactions from microscopy images. Finally, we also provide a reference implementation in Python and an easy-to-use napari plugin. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/228030 Moretti, Bruno; Rodriguez Alvarez, Santiago Nicolas; Grecco, Hernan Edgardo; Nfinder: automatic inference of cell neighborhood in 2D and 3D using nuclear markers; BioMed Central; BMC Bioinformatics; 24; 1; 12-2023; 1-12 1471-2105 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/228030 |
| identifier_str_mv |
Moretti, Bruno; Rodriguez Alvarez, Santiago Nicolas; Grecco, Hernan Edgardo; Nfinder: automatic inference of cell neighborhood in 2D and 3D using nuclear markers; BioMed Central; BMC Bioinformatics; 24; 1; 12-2023; 1-12 1471-2105 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1186/s12859-023-05284-2 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
BioMed Central |
| publisher.none.fl_str_mv |
BioMed Central |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781749889073152 |
| score |
12.982451 |