History state formalism for scalar particles
- Autores
- Diaz, Nahuel Luciano; Matera, Juan Mauricio; Rossignoli, Raúl Dante
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a covariant quantum formalism for scalar particles based on an enlarged Hilbert space. The particular physical theory can be introduced through a timeless Wheeler DeWitt-like equation, whose projection onto four-dimensional coordinates leads to the Klein-Gordon equation. The standard quantum mechanical product in the enlarged space, which is invariant and positive definite, implies the usual Klein-Gordon product when applied to its eigenstates. Moreover, the standard three-dimensional invariant measure emerges naturally from the flat measure in four dimensions when mass eigenstates are considered, allowing a rigorous identification between definite mass history states and the standard Wigner representation. Connections with the free propagator of scalar field theory and localized states are subsequently derived. The formalism also allows the superposition of different theories and remains valid in the presence of a fixed external field, revealing special orthogonality relations. Other details such as extended identities for the current density, the quantization of parameterized theories and the nonrelativistic limit, with its connection to the Page and Wooters formalism, are discussed. A related consistent second quantization formulation is also introduced.
Fil: Diaz, Nahuel Luciano. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Matera, Juan Mauricio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Rossignoli, Raúl Dante. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina - Materia
-
KLEINGORDON
QUANTUMTIME
LORENTZ
PARTICLES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/143365
Ver los metadatos del registro completo
id |
CONICETDig_3caf66311a787790df92ef86d1c3a7e0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/143365 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
History state formalism for scalar particlesDiaz, Nahuel LucianoMatera, Juan MauricioRossignoli, Raúl DanteKLEINGORDONQUANTUMTIMELORENTZPARTICLEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present a covariant quantum formalism for scalar particles based on an enlarged Hilbert space. The particular physical theory can be introduced through a timeless Wheeler DeWitt-like equation, whose projection onto four-dimensional coordinates leads to the Klein-Gordon equation. The standard quantum mechanical product in the enlarged space, which is invariant and positive definite, implies the usual Klein-Gordon product when applied to its eigenstates. Moreover, the standard three-dimensional invariant measure emerges naturally from the flat measure in four dimensions when mass eigenstates are considered, allowing a rigorous identification between definite mass history states and the standard Wigner representation. Connections with the free propagator of scalar field theory and localized states are subsequently derived. The formalism also allows the superposition of different theories and remains valid in the presence of a fixed external field, revealing special orthogonality relations. Other details such as extended identities for the current density, the quantization of parameterized theories and the nonrelativistic limit, with its connection to the Page and Wooters formalism, are discussed. A related consistent second quantization formulation is also introduced.Fil: Diaz, Nahuel Luciano. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Matera, Juan Mauricio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Rossignoli, Raúl Dante. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; ArgentinaAmerican Physical Society2019-12-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/143365Diaz, Nahuel Luciano; Matera, Juan Mauricio; Rossignoli, Raúl Dante; History state formalism for scalar particles; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 100; 12; 30-12-2019; 1-122470-00102470-0029CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevD.100.125020info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.100.125020info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1910.04004info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:33Zoai:ri.conicet.gov.ar:11336/143365instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:33.493CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
History state formalism for scalar particles |
title |
History state formalism for scalar particles |
spellingShingle |
History state formalism for scalar particles Diaz, Nahuel Luciano KLEINGORDON QUANTUMTIME LORENTZ PARTICLES |
title_short |
History state formalism for scalar particles |
title_full |
History state formalism for scalar particles |
title_fullStr |
History state formalism for scalar particles |
title_full_unstemmed |
History state formalism for scalar particles |
title_sort |
History state formalism for scalar particles |
dc.creator.none.fl_str_mv |
Diaz, Nahuel Luciano Matera, Juan Mauricio Rossignoli, Raúl Dante |
author |
Diaz, Nahuel Luciano |
author_facet |
Diaz, Nahuel Luciano Matera, Juan Mauricio Rossignoli, Raúl Dante |
author_role |
author |
author2 |
Matera, Juan Mauricio Rossignoli, Raúl Dante |
author2_role |
author author |
dc.subject.none.fl_str_mv |
KLEINGORDON QUANTUMTIME LORENTZ PARTICLES |
topic |
KLEINGORDON QUANTUMTIME LORENTZ PARTICLES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present a covariant quantum formalism for scalar particles based on an enlarged Hilbert space. The particular physical theory can be introduced through a timeless Wheeler DeWitt-like equation, whose projection onto four-dimensional coordinates leads to the Klein-Gordon equation. The standard quantum mechanical product in the enlarged space, which is invariant and positive definite, implies the usual Klein-Gordon product when applied to its eigenstates. Moreover, the standard three-dimensional invariant measure emerges naturally from the flat measure in four dimensions when mass eigenstates are considered, allowing a rigorous identification between definite mass history states and the standard Wigner representation. Connections with the free propagator of scalar field theory and localized states are subsequently derived. The formalism also allows the superposition of different theories and remains valid in the presence of a fixed external field, revealing special orthogonality relations. Other details such as extended identities for the current density, the quantization of parameterized theories and the nonrelativistic limit, with its connection to the Page and Wooters formalism, are discussed. A related consistent second quantization formulation is also introduced. Fil: Diaz, Nahuel Luciano. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: Matera, Juan Mauricio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: Rossignoli, Raúl Dante. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina |
description |
We present a covariant quantum formalism for scalar particles based on an enlarged Hilbert space. The particular physical theory can be introduced through a timeless Wheeler DeWitt-like equation, whose projection onto four-dimensional coordinates leads to the Klein-Gordon equation. The standard quantum mechanical product in the enlarged space, which is invariant and positive definite, implies the usual Klein-Gordon product when applied to its eigenstates. Moreover, the standard three-dimensional invariant measure emerges naturally from the flat measure in four dimensions when mass eigenstates are considered, allowing a rigorous identification between definite mass history states and the standard Wigner representation. Connections with the free propagator of scalar field theory and localized states are subsequently derived. The formalism also allows the superposition of different theories and remains valid in the presence of a fixed external field, revealing special orthogonality relations. Other details such as extended identities for the current density, the quantization of parameterized theories and the nonrelativistic limit, with its connection to the Page and Wooters formalism, are discussed. A related consistent second quantization formulation is also introduced. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12-30 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/143365 Diaz, Nahuel Luciano; Matera, Juan Mauricio; Rossignoli, Raúl Dante; History state formalism for scalar particles; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 100; 12; 30-12-2019; 1-12 2470-0010 2470-0029 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/143365 |
identifier_str_mv |
Diaz, Nahuel Luciano; Matera, Juan Mauricio; Rossignoli, Raúl Dante; History state formalism for scalar particles; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 100; 12; 30-12-2019; 1-12 2470-0010 2470-0029 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevD.100.125020 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.100.125020 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1910.04004 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268867208937472 |
score |
13.13397 |