History state formalism for scalar particles

Autores
Diaz, Nahuel Luciano; Matera, Juan Mauricio; Rossignoli, Raúl Dante
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present a covariant quantum formalism for scalar particles based on an enlarged Hilbert space. The particular physical theory can be introduced through a timeless Wheeler DeWitt-like equation, whose projection onto four-dimensional coordinates leads to the Klein-Gordon equation. The standard quantum mechanical product in the enlarged space, which is invariant and positive definite, implies the usual Klein-Gordon product when applied to its eigenstates. Moreover, the standard three-dimensional invariant measure emerges naturally from the flat measure in four dimensions when mass eigenstates are considered, allowing a rigorous identification between definite mass history states and the standard Wigner representation. Connections with the free propagator of scalar field theory and localized states are subsequently derived. The formalism also allows the superposition of different theories and remains valid in the presence of a fixed external field, revealing special orthogonality relations. Other details such as extended identities for the current density, the quantization of parameterized theories and the nonrelativistic limit, with its connection to the Page and Wooters formalism, are discussed. A related consistent second quantization formulation is also introduced.
Fil: Diaz, Nahuel Luciano. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Matera, Juan Mauricio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Rossignoli, Raúl Dante. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina
Materia
KLEINGORDON
QUANTUMTIME
LORENTZ
PARTICLES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/143365

id CONICETDig_3caf66311a787790df92ef86d1c3a7e0
oai_identifier_str oai:ri.conicet.gov.ar:11336/143365
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling History state formalism for scalar particlesDiaz, Nahuel LucianoMatera, Juan MauricioRossignoli, Raúl DanteKLEINGORDONQUANTUMTIMELORENTZPARTICLEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present a covariant quantum formalism for scalar particles based on an enlarged Hilbert space. The particular physical theory can be introduced through a timeless Wheeler DeWitt-like equation, whose projection onto four-dimensional coordinates leads to the Klein-Gordon equation. The standard quantum mechanical product in the enlarged space, which is invariant and positive definite, implies the usual Klein-Gordon product when applied to its eigenstates. Moreover, the standard three-dimensional invariant measure emerges naturally from the flat measure in four dimensions when mass eigenstates are considered, allowing a rigorous identification between definite mass history states and the standard Wigner representation. Connections with the free propagator of scalar field theory and localized states are subsequently derived. The formalism also allows the superposition of different theories and remains valid in the presence of a fixed external field, revealing special orthogonality relations. Other details such as extended identities for the current density, the quantization of parameterized theories and the nonrelativistic limit, with its connection to the Page and Wooters formalism, are discussed. A related consistent second quantization formulation is also introduced.Fil: Diaz, Nahuel Luciano. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Matera, Juan Mauricio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Rossignoli, Raúl Dante. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; ArgentinaAmerican Physical Society2019-12-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/143365Diaz, Nahuel Luciano; Matera, Juan Mauricio; Rossignoli, Raúl Dante; History state formalism for scalar particles; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 100; 12; 30-12-2019; 1-122470-00102470-0029CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevD.100.125020info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.100.125020info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1910.04004info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:33Zoai:ri.conicet.gov.ar:11336/143365instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:33.493CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv History state formalism for scalar particles
title History state formalism for scalar particles
spellingShingle History state formalism for scalar particles
Diaz, Nahuel Luciano
KLEINGORDON
QUANTUMTIME
LORENTZ
PARTICLES
title_short History state formalism for scalar particles
title_full History state formalism for scalar particles
title_fullStr History state formalism for scalar particles
title_full_unstemmed History state formalism for scalar particles
title_sort History state formalism for scalar particles
dc.creator.none.fl_str_mv Diaz, Nahuel Luciano
Matera, Juan Mauricio
Rossignoli, Raúl Dante
author Diaz, Nahuel Luciano
author_facet Diaz, Nahuel Luciano
Matera, Juan Mauricio
Rossignoli, Raúl Dante
author_role author
author2 Matera, Juan Mauricio
Rossignoli, Raúl Dante
author2_role author
author
dc.subject.none.fl_str_mv KLEINGORDON
QUANTUMTIME
LORENTZ
PARTICLES
topic KLEINGORDON
QUANTUMTIME
LORENTZ
PARTICLES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present a covariant quantum formalism for scalar particles based on an enlarged Hilbert space. The particular physical theory can be introduced through a timeless Wheeler DeWitt-like equation, whose projection onto four-dimensional coordinates leads to the Klein-Gordon equation. The standard quantum mechanical product in the enlarged space, which is invariant and positive definite, implies the usual Klein-Gordon product when applied to its eigenstates. Moreover, the standard three-dimensional invariant measure emerges naturally from the flat measure in four dimensions when mass eigenstates are considered, allowing a rigorous identification between definite mass history states and the standard Wigner representation. Connections with the free propagator of scalar field theory and localized states are subsequently derived. The formalism also allows the superposition of different theories and remains valid in the presence of a fixed external field, revealing special orthogonality relations. Other details such as extended identities for the current density, the quantization of parameterized theories and the nonrelativistic limit, with its connection to the Page and Wooters formalism, are discussed. A related consistent second quantization formulation is also introduced.
Fil: Diaz, Nahuel Luciano. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Matera, Juan Mauricio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Rossignoli, Raúl Dante. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina
description We present a covariant quantum formalism for scalar particles based on an enlarged Hilbert space. The particular physical theory can be introduced through a timeless Wheeler DeWitt-like equation, whose projection onto four-dimensional coordinates leads to the Klein-Gordon equation. The standard quantum mechanical product in the enlarged space, which is invariant and positive definite, implies the usual Klein-Gordon product when applied to its eigenstates. Moreover, the standard three-dimensional invariant measure emerges naturally from the flat measure in four dimensions when mass eigenstates are considered, allowing a rigorous identification between definite mass history states and the standard Wigner representation. Connections with the free propagator of scalar field theory and localized states are subsequently derived. The formalism also allows the superposition of different theories and remains valid in the presence of a fixed external field, revealing special orthogonality relations. Other details such as extended identities for the current density, the quantization of parameterized theories and the nonrelativistic limit, with its connection to the Page and Wooters formalism, are discussed. A related consistent second quantization formulation is also introduced.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-30
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/143365
Diaz, Nahuel Luciano; Matera, Juan Mauricio; Rossignoli, Raúl Dante; History state formalism for scalar particles; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 100; 12; 30-12-2019; 1-12
2470-0010
2470-0029
CONICET Digital
CONICET
url http://hdl.handle.net/11336/143365
identifier_str_mv Diaz, Nahuel Luciano; Matera, Juan Mauricio; Rossignoli, Raúl Dante; History state formalism for scalar particles; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 100; 12; 30-12-2019; 1-12
2470-0010
2470-0029
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevD.100.125020
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.100.125020
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1910.04004
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268867208937472
score 13.13397