History state formalism for scalar particles

Autores
Diaz, Nahuel; Matera, Juan Mauricio; Rossignoli, Raúl Dante
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión enviada
Descripción
We present a covariant quantum formalism for scalar particles based on an enlarged Hilbert space. The particular physical theory can be introduced through a timeless Wheeler DeWitt-like equation, whose projection onto four-dimensional coordinates leads to the Klein-Gordon equation. The standard quantum mechanical product in the enlarged space, which is invariant and positive definite, implies the usual Klein- Gordon product when applied to its eigenstates. Moreover, the standard three-dimensional invariant measure emerges naturally from the flat measure in four dimensions when mass eigenstates are considered, allowing a rigorous identification between definite mass history states and the standard Wigner representation. Connections with the free propagator of scalar field theory and localized states are subsequently derived. The formalism also allows the superposition of different theories and remains valid in the presence of a fixed external field, revealing special orthogonality relations. Other details such as extended identities for the current density, the quantization of parameterized theories and the nonrelativistic limit, with its connection to the Page and Wooters formalism, are discussed. A related consistent second quantization formulation is also introduced.
Materia
Ciencias Físicas
Relativistic quantum history states
scalar particles
quantum entanglement
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
CIC Digital (CICBA)
Institución
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
OAI Identificador
oai:digital.cic.gba.gob.ar:11746/10968

id CICBA_a15894340e5ad68347356ce2964b51a4
oai_identifier_str oai:digital.cic.gba.gob.ar:11746/10968
network_acronym_str CICBA
repository_id_str 9441
network_name_str CIC Digital (CICBA)
spelling History state formalism for scalar particlesDiaz, NahuelMatera, Juan MauricioRossignoli, Raúl DanteCiencias FísicasRelativistic quantum history statesscalar particlesquantum entanglementWe present a covariant quantum formalism for scalar particles based on an enlarged Hilbert space. The particular physical theory can be introduced through a timeless Wheeler DeWitt-like equation, whose projection onto four-dimensional coordinates leads to the Klein-Gordon equation. The standard quantum mechanical product in the enlarged space, which is invariant and positive definite, implies the usual Klein- Gordon product when applied to its eigenstates. Moreover, the standard three-dimensional invariant measure emerges naturally from the flat measure in four dimensions when mass eigenstates are considered, allowing a rigorous identification between definite mass history states and the standard Wigner representation. Connections with the free propagator of scalar field theory and localized states are subsequently derived. The formalism also allows the superposition of different theories and remains valid in the presence of a fixed external field, revealing special orthogonality relations. Other details such as extended identities for the current density, the quantization of parameterized theories and the nonrelativistic limit, with its connection to the Page and Wooters formalism, are discussed. A related consistent second quantization formulation is also introduced.2019-12-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/submittedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/10968enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-04T09:42:58Zoai:digital.cic.gba.gob.ar:11746/10968Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-04 09:42:58.554CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse
dc.title.none.fl_str_mv History state formalism for scalar particles
title History state formalism for scalar particles
spellingShingle History state formalism for scalar particles
Diaz, Nahuel
Ciencias Físicas
Relativistic quantum history states
scalar particles
quantum entanglement
title_short History state formalism for scalar particles
title_full History state formalism for scalar particles
title_fullStr History state formalism for scalar particles
title_full_unstemmed History state formalism for scalar particles
title_sort History state formalism for scalar particles
dc.creator.none.fl_str_mv Diaz, Nahuel
Matera, Juan Mauricio
Rossignoli, Raúl Dante
author Diaz, Nahuel
author_facet Diaz, Nahuel
Matera, Juan Mauricio
Rossignoli, Raúl Dante
author_role author
author2 Matera, Juan Mauricio
Rossignoli, Raúl Dante
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Físicas
Relativistic quantum history states
scalar particles
quantum entanglement
topic Ciencias Físicas
Relativistic quantum history states
scalar particles
quantum entanglement
dc.description.none.fl_txt_mv We present a covariant quantum formalism for scalar particles based on an enlarged Hilbert space. The particular physical theory can be introduced through a timeless Wheeler DeWitt-like equation, whose projection onto four-dimensional coordinates leads to the Klein-Gordon equation. The standard quantum mechanical product in the enlarged space, which is invariant and positive definite, implies the usual Klein- Gordon product when applied to its eigenstates. Moreover, the standard three-dimensional invariant measure emerges naturally from the flat measure in four dimensions when mass eigenstates are considered, allowing a rigorous identification between definite mass history states and the standard Wigner representation. Connections with the free propagator of scalar field theory and localized states are subsequently derived. The formalism also allows the superposition of different theories and remains valid in the presence of a fixed external field, revealing special orthogonality relations. Other details such as extended identities for the current density, the quantization of parameterized theories and the nonrelativistic limit, with its connection to the Page and Wooters formalism, are discussed. A related consistent second quantization formulation is also introduced.
description We present a covariant quantum formalism for scalar particles based on an enlarged Hilbert space. The particular physical theory can be introduced through a timeless Wheeler DeWitt-like equation, whose projection onto four-dimensional coordinates leads to the Klein-Gordon equation. The standard quantum mechanical product in the enlarged space, which is invariant and positive definite, implies the usual Klein- Gordon product when applied to its eigenstates. Moreover, the standard three-dimensional invariant measure emerges naturally from the flat measure in four dimensions when mass eigenstates are considered, allowing a rigorous identification between definite mass history states and the standard Wigner representation. Connections with the free propagator of scalar field theory and localized states are subsequently derived. The formalism also allows the superposition of different theories and remains valid in the presence of a fixed external field, revealing special orthogonality relations. Other details such as extended identities for the current density, the quantization of parameterized theories and the nonrelativistic limit, with its connection to the Page and Wooters formalism, are discussed. A related consistent second quantization formulation is also introduced.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-30
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/submittedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str submittedVersion
dc.identifier.none.fl_str_mv https://digital.cic.gba.gob.ar/handle/11746/10968
url https://digital.cic.gba.gob.ar/handle/11746/10968
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:CIC Digital (CICBA)
instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron:CICBA
reponame_str CIC Digital (CICBA)
collection CIC Digital (CICBA)
instname_str Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron_str CICBA
institution CICBA
repository.name.fl_str_mv CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
repository.mail.fl_str_mv marisa.degiusti@sedici.unlp.edu.ar
_version_ 1842340398931902464
score 12.623145