ADAN: a database for prediction of protein–protein interaction of modular domains mediated by linear motifs
- Autores
- Encinar, J. A.; Fernández Ballester, G.; Sánchez Miguel, Ignacio Enrique; Hurtado Gómez, E.; Stricher, F.; Beltrao, P.; Serrano, L.
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Motivation: Most of the structures and functions of proteome globular domains are yet unknown. We can use high-resolution structures from different modular domains in combination with automatic protein design algorithms to predict genome-wide potential interactions of a protein. ADAN database and related web tools are online resources for the predictive analysis of ligand–domain complexes. ADAN database is a collection of different modular protein domains (SH2, SH3, PDZ, WW, etc.). It contains 3505 entries with extensive structural and functional information available, manually integrated, curated and annotated with cross-references to other databases, biochemical and thermodynamical data, simplified coordinate files, sequence files and alignments. Prediadan, a subset of ADAN database, offers position-specific scoring matrices for protein–protein interactions, calculated by FoldX, and predictions of optimum ligands and putative binding partners. Users can also scan a query sequence against selected matrices, or improve a ligand–domain interaction.
Fil: Encinar, J. A.. Universidad de Miguel Hernández; España
Fil: Fernández Ballester, G.. Universidad de Miguel Hernández; España
Fil: Sánchez Miguel, Ignacio Enrique. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina
Fil: Hurtado Gómez, E.. Universidad de Miguel Hernández; España
Fil: Stricher, F.. Universitat Pompeu Fabra; España
Fil: Beltrao, P.. University of California; Estados Unidos
Fil: Serrano, L.. Universitat Pompeu Fabra; España - Materia
-
Protein-Protein Interaction
Modular Domains
Linear Motifs
Database - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/20664
Ver los metadatos del registro completo
id |
CONICETDig_3bf42d002ad89626185a453db84f6b44 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/20664 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
ADAN: a database for prediction of protein–protein interaction of modular domains mediated by linear motifsEncinar, J. A.Fernández Ballester, G.Sánchez Miguel, Ignacio EnriqueHurtado Gómez, E.Stricher, F.Beltrao, P.Serrano, L.Protein-Protein InteractionModular DomainsLinear MotifsDatabasehttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Motivation: Most of the structures and functions of proteome globular domains are yet unknown. We can use high-resolution structures from different modular domains in combination with automatic protein design algorithms to predict genome-wide potential interactions of a protein. ADAN database and related web tools are online resources for the predictive analysis of ligand–domain complexes. ADAN database is a collection of different modular protein domains (SH2, SH3, PDZ, WW, etc.). It contains 3505 entries with extensive structural and functional information available, manually integrated, curated and annotated with cross-references to other databases, biochemical and thermodynamical data, simplified coordinate files, sequence files and alignments. Prediadan, a subset of ADAN database, offers position-specific scoring matrices for protein–protein interactions, calculated by FoldX, and predictions of optimum ligands and putative binding partners. Users can also scan a query sequence against selected matrices, or improve a ligand–domain interaction.Fil: Encinar, J. A.. Universidad de Miguel Hernández; EspañaFil: Fernández Ballester, G.. Universidad de Miguel Hernández; EspañaFil: Sánchez Miguel, Ignacio Enrique. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Hurtado Gómez, E.. Universidad de Miguel Hernández; EspañaFil: Stricher, F.. Universitat Pompeu Fabra; EspañaFil: Beltrao, P.. University of California; Estados UnidosFil: Serrano, L.. Universitat Pompeu Fabra; EspañaOxford University Press2009-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/20664Encinar, J. A.; Fernández Ballester, G.; Sánchez Miguel, Ignacio Enrique; Hurtado Gómez, E.; Stricher, F.; et al.; ADAN: a database for prediction of protein–protein interaction of modular domains mediated by linear motifs; Oxford University Press; Bioinformatics (oxford, England); 25; 18; 9-2009; 2418-24241367-48031367-4811CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1093/bioinformatics/btp424info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btp424info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:03:58Zoai:ri.conicet.gov.ar:11336/20664instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:03:59.141CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
ADAN: a database for prediction of protein–protein interaction of modular domains mediated by linear motifs |
title |
ADAN: a database for prediction of protein–protein interaction of modular domains mediated by linear motifs |
spellingShingle |
ADAN: a database for prediction of protein–protein interaction of modular domains mediated by linear motifs Encinar, J. A. Protein-Protein Interaction Modular Domains Linear Motifs Database |
title_short |
ADAN: a database for prediction of protein–protein interaction of modular domains mediated by linear motifs |
title_full |
ADAN: a database for prediction of protein–protein interaction of modular domains mediated by linear motifs |
title_fullStr |
ADAN: a database for prediction of protein–protein interaction of modular domains mediated by linear motifs |
title_full_unstemmed |
ADAN: a database for prediction of protein–protein interaction of modular domains mediated by linear motifs |
title_sort |
ADAN: a database for prediction of protein–protein interaction of modular domains mediated by linear motifs |
dc.creator.none.fl_str_mv |
Encinar, J. A. Fernández Ballester, G. Sánchez Miguel, Ignacio Enrique Hurtado Gómez, E. Stricher, F. Beltrao, P. Serrano, L. |
author |
Encinar, J. A. |
author_facet |
Encinar, J. A. Fernández Ballester, G. Sánchez Miguel, Ignacio Enrique Hurtado Gómez, E. Stricher, F. Beltrao, P. Serrano, L. |
author_role |
author |
author2 |
Fernández Ballester, G. Sánchez Miguel, Ignacio Enrique Hurtado Gómez, E. Stricher, F. Beltrao, P. Serrano, L. |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Protein-Protein Interaction Modular Domains Linear Motifs Database |
topic |
Protein-Protein Interaction Modular Domains Linear Motifs Database |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Motivation: Most of the structures and functions of proteome globular domains are yet unknown. We can use high-resolution structures from different modular domains in combination with automatic protein design algorithms to predict genome-wide potential interactions of a protein. ADAN database and related web tools are online resources for the predictive analysis of ligand–domain complexes. ADAN database is a collection of different modular protein domains (SH2, SH3, PDZ, WW, etc.). It contains 3505 entries with extensive structural and functional information available, manually integrated, curated and annotated with cross-references to other databases, biochemical and thermodynamical data, simplified coordinate files, sequence files and alignments. Prediadan, a subset of ADAN database, offers position-specific scoring matrices for protein–protein interactions, calculated by FoldX, and predictions of optimum ligands and putative binding partners. Users can also scan a query sequence against selected matrices, or improve a ligand–domain interaction. Fil: Encinar, J. A.. Universidad de Miguel Hernández; España Fil: Fernández Ballester, G.. Universidad de Miguel Hernández; España Fil: Sánchez Miguel, Ignacio Enrique. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina Fil: Hurtado Gómez, E.. Universidad de Miguel Hernández; España Fil: Stricher, F.. Universitat Pompeu Fabra; España Fil: Beltrao, P.. University of California; Estados Unidos Fil: Serrano, L.. Universitat Pompeu Fabra; España |
description |
Motivation: Most of the structures and functions of proteome globular domains are yet unknown. We can use high-resolution structures from different modular domains in combination with automatic protein design algorithms to predict genome-wide potential interactions of a protein. ADAN database and related web tools are online resources for the predictive analysis of ligand–domain complexes. ADAN database is a collection of different modular protein domains (SH2, SH3, PDZ, WW, etc.). It contains 3505 entries with extensive structural and functional information available, manually integrated, curated and annotated with cross-references to other databases, biochemical and thermodynamical data, simplified coordinate files, sequence files and alignments. Prediadan, a subset of ADAN database, offers position-specific scoring matrices for protein–protein interactions, calculated by FoldX, and predictions of optimum ligands and putative binding partners. Users can also scan a query sequence against selected matrices, or improve a ligand–domain interaction. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/20664 Encinar, J. A.; Fernández Ballester, G.; Sánchez Miguel, Ignacio Enrique; Hurtado Gómez, E.; Stricher, F.; et al.; ADAN: a database for prediction of protein–protein interaction of modular domains mediated by linear motifs; Oxford University Press; Bioinformatics (oxford, England); 25; 18; 9-2009; 2418-2424 1367-4803 1367-4811 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/20664 |
identifier_str_mv |
Encinar, J. A.; Fernández Ballester, G.; Sánchez Miguel, Ignacio Enrique; Hurtado Gómez, E.; Stricher, F.; et al.; ADAN: a database for prediction of protein–protein interaction of modular domains mediated by linear motifs; Oxford University Press; Bioinformatics (oxford, England); 25; 18; 9-2009; 2418-2424 1367-4803 1367-4811 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1093/bioinformatics/btp424 info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btp424 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613862019563520 |
score |
13.070432 |