LIF based fluorescent immunosensor using AP-SNs and QDs for quantitation of IgG anti Toxocara canis in human serum samples

Autores
Messina, Germán Alejandro; Aranda, Pedro Rodolfo; Pereira, Sirley Vanesa; Bertolino, Franco Adrián; Raba, Julio
Año de publicación
2017
Idioma
inglés
Tipo de recurso
parte de libro
Estado
versión publicada
Descripción
Toxocariasis, one of the most common zoonotic infection worldwide, is caused by Toxocara canis (T. canis), or less commonly, Toxocara cati [1,2]. In humans, the infection is acquired by oral route through accidental ingestion of infective eggs from soil-contaminated hands, consumption of poorly sanitized vegetables and raw or undercooked meats [3,4]. Toxocara infective eggs hatch into the first portion of the intestine. Subsequently, the juvenile stages are distributed throughout the body, generating symptoms from mild to severe manifestations. The possibility of early diagnosis is of great importance, allowing proper management and treatment of patients suffering from toxocariasis. In last years, nanotechnology has contributed to the development of miniaturized immunosensor-based devices with high-throughput analytical properties [5,6]. Different nanomaterials such as quantum dots (QDs), silica nanoparticles (SNs), and other nanoparticles have emerged as promising alternatives for a wide range of immunosensors applications. The objective of this work was to develop a microfluidic immunosensor that include the use of nanomaterials for the quantitative determination of IgG antibodies to IgG anti-T.canis. For the development of the microfluidic immunosensor, excretory-secretory antigens from T. canis second-stage larvae (TES) were obtained according to the technique described by Gillespie (1995) [7]. The IgG anti-T.canis antibodies detection in serum samples were carried out using a non-competitive format immunoassay. TES immobilized on 3-aminopropyl-functionalized silica-nanoparticles (AP-SNs) covalently incorporated in the central channel of the device are recognized specifically by the anti-T. canis antibodies in the sample. The subsequent detection was achieved by adding a second antibody labeled with cadmium selenide zinc sulfide quantum dots (CdSe-ZnS QDs) specific to human IgG. The concentration of IgG anti-T. canis antibodies present in the serum sample was measured by LIF detector, using excitation lambda at 491 nm and emission at 540 nm. Relevant studies of experimental variables that affect the performance of microfluidic immunosensor for IgG anti-T. canis antibodies determination were done. Between them, the optimal flow rate, incubation time, concentration of TES to be immobilized, enzymatic activity and the amplification effect resulting from the incorporation of the AP-SNs, were studied The combination of two different nanomaterials; AP-SNs as bioaffinity supports and QDs as fluorescent labels, enabled us to achieve a useful alternative tool for T. canis diagnostic. SNs proved to be an excellent choice for optical sensing, increasing the active area and consequently the sensitivity. The total assay time was 30 minutes, having made LIF detection in less than 1 minute. The detection limit calculated for the proposed methodology was 0.12 ng mL-1 and the coefficients of intra- and inter-assay variation were less than 6%. The results show the usefulness of the developed immunosensor for the fast determination of IgG antibodies anti T. canis.
Fil: Messina, Germán Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Química de San Luis. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Química de San Luis; Argentina
Fil: Aranda, Pedro Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Química de San Luis. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Química de San Luis; Argentina
Fil: Pereira, Sirley Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Química de San Luis. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Química de San Luis; Argentina
Fil: Bertolino, Franco Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Química de San Luis. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Química de San Luis; Argentina
Fil: Raba, Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Química de San Luis. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Química de San Luis; Argentina
Materia
DIAGNOSTIC
NANOMATERIALS
LIF
T. CANIS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/152142

id CONICETDig_3b1a34734ba11b6e3b19bc357fbfdeb1
oai_identifier_str oai:ri.conicet.gov.ar:11336/152142
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling LIF based fluorescent immunosensor using AP-SNs and QDs for quantitation of IgG anti Toxocara canis in human serum samplesMessina, Germán AlejandroAranda, Pedro RodolfoPereira, Sirley VanesaBertolino, Franco AdriánRaba, JulioDIAGNOSTICNANOMATERIALSLIFT. CANIShttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Toxocariasis, one of the most common zoonotic infection worldwide, is caused by Toxocara canis (T. canis), or less commonly, Toxocara cati [1,2]. In humans, the infection is acquired by oral route through accidental ingestion of infective eggs from soil-contaminated hands, consumption of poorly sanitized vegetables and raw or undercooked meats [3,4]. Toxocara infective eggs hatch into the first portion of the intestine. Subsequently, the juvenile stages are distributed throughout the body, generating symptoms from mild to severe manifestations. The possibility of early diagnosis is of great importance, allowing proper management and treatment of patients suffering from toxocariasis. In last years, nanotechnology has contributed to the development of miniaturized immunosensor-based devices with high-throughput analytical properties [5,6]. Different nanomaterials such as quantum dots (QDs), silica nanoparticles (SNs), and other nanoparticles have emerged as promising alternatives for a wide range of immunosensors applications. The objective of this work was to develop a microfluidic immunosensor that include the use of nanomaterials for the quantitative determination of IgG antibodies to IgG anti-T.canis. For the development of the microfluidic immunosensor, excretory-secretory antigens from T. canis second-stage larvae (TES) were obtained according to the technique described by Gillespie (1995) [7]. The IgG anti-T.canis antibodies detection in serum samples were carried out using a non-competitive format immunoassay. TES immobilized on 3-aminopropyl-functionalized silica-nanoparticles (AP-SNs) covalently incorporated in the central channel of the device are recognized specifically by the anti-T. canis antibodies in the sample. The subsequent detection was achieved by adding a second antibody labeled with cadmium selenide zinc sulfide quantum dots (CdSe-ZnS QDs) specific to human IgG. The concentration of IgG anti-T. canis antibodies present in the serum sample was measured by LIF detector, using excitation lambda at 491 nm and emission at 540 nm. Relevant studies of experimental variables that affect the performance of microfluidic immunosensor for IgG anti-T. canis antibodies determination were done. Between them, the optimal flow rate, incubation time, concentration of TES to be immobilized, enzymatic activity and the amplification effect resulting from the incorporation of the AP-SNs, were studied The combination of two different nanomaterials; AP-SNs as bioaffinity supports and QDs as fluorescent labels, enabled us to achieve a useful alternative tool for T. canis diagnostic. SNs proved to be an excellent choice for optical sensing, increasing the active area and consequently the sensitivity. The total assay time was 30 minutes, having made LIF detection in less than 1 minute. The detection limit calculated for the proposed methodology was 0.12 ng mL-1 and the coefficients of intra- and inter-assay variation were less than 6%. The results show the usefulness of the developed immunosensor for the fast determination of IgG antibodies anti T. canis.Fil: Messina, Germán Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Química de San Luis. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Química de San Luis; ArgentinaFil: Aranda, Pedro Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Química de San Luis. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Química de San Luis; ArgentinaFil: Pereira, Sirley Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Química de San Luis. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Química de San Luis; ArgentinaFil: Bertolino, Franco Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Química de San Luis. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Química de San Luis; ArgentinaFil: Raba, Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Química de San Luis. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Química de San Luis; ArgentinaTechConnect2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookParthttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/152142Messina, Germán Alejandro; Aranda, Pedro Rodolfo; Pereira, Sirley Vanesa; Bertolino, Franco Adrián; Raba, Julio; LIF based fluorescent immunosensor using AP-SNs and QDs for quantitation of IgG anti Toxocara canis in human serum samples; TechConnect; 3; 2017; 192-194978-0-9988782-0-1CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://briefs.techconnect.org/papers/lif-based-fluorescent-immunosensor-using-ap-sns-and-qds-for-quantitation-of-igg-anti-toxocara-canis-in-human-serum-samples/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:44:30Zoai:ri.conicet.gov.ar:11336/152142instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:44:30.392CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv LIF based fluorescent immunosensor using AP-SNs and QDs for quantitation of IgG anti Toxocara canis in human serum samples
title LIF based fluorescent immunosensor using AP-SNs and QDs for quantitation of IgG anti Toxocara canis in human serum samples
spellingShingle LIF based fluorescent immunosensor using AP-SNs and QDs for quantitation of IgG anti Toxocara canis in human serum samples
Messina, Germán Alejandro
DIAGNOSTIC
NANOMATERIALS
LIF
T. CANIS
title_short LIF based fluorescent immunosensor using AP-SNs and QDs for quantitation of IgG anti Toxocara canis in human serum samples
title_full LIF based fluorescent immunosensor using AP-SNs and QDs for quantitation of IgG anti Toxocara canis in human serum samples
title_fullStr LIF based fluorescent immunosensor using AP-SNs and QDs for quantitation of IgG anti Toxocara canis in human serum samples
title_full_unstemmed LIF based fluorescent immunosensor using AP-SNs and QDs for quantitation of IgG anti Toxocara canis in human serum samples
title_sort LIF based fluorescent immunosensor using AP-SNs and QDs for quantitation of IgG anti Toxocara canis in human serum samples
dc.creator.none.fl_str_mv Messina, Germán Alejandro
Aranda, Pedro Rodolfo
Pereira, Sirley Vanesa
Bertolino, Franco Adrián
Raba, Julio
author Messina, Germán Alejandro
author_facet Messina, Germán Alejandro
Aranda, Pedro Rodolfo
Pereira, Sirley Vanesa
Bertolino, Franco Adrián
Raba, Julio
author_role author
author2 Aranda, Pedro Rodolfo
Pereira, Sirley Vanesa
Bertolino, Franco Adrián
Raba, Julio
author2_role author
author
author
author
dc.subject.none.fl_str_mv DIAGNOSTIC
NANOMATERIALS
LIF
T. CANIS
topic DIAGNOSTIC
NANOMATERIALS
LIF
T. CANIS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Toxocariasis, one of the most common zoonotic infection worldwide, is caused by Toxocara canis (T. canis), or less commonly, Toxocara cati [1,2]. In humans, the infection is acquired by oral route through accidental ingestion of infective eggs from soil-contaminated hands, consumption of poorly sanitized vegetables and raw or undercooked meats [3,4]. Toxocara infective eggs hatch into the first portion of the intestine. Subsequently, the juvenile stages are distributed throughout the body, generating symptoms from mild to severe manifestations. The possibility of early diagnosis is of great importance, allowing proper management and treatment of patients suffering from toxocariasis. In last years, nanotechnology has contributed to the development of miniaturized immunosensor-based devices with high-throughput analytical properties [5,6]. Different nanomaterials such as quantum dots (QDs), silica nanoparticles (SNs), and other nanoparticles have emerged as promising alternatives for a wide range of immunosensors applications. The objective of this work was to develop a microfluidic immunosensor that include the use of nanomaterials for the quantitative determination of IgG antibodies to IgG anti-T.canis. For the development of the microfluidic immunosensor, excretory-secretory antigens from T. canis second-stage larvae (TES) were obtained according to the technique described by Gillespie (1995) [7]. The IgG anti-T.canis antibodies detection in serum samples were carried out using a non-competitive format immunoassay. TES immobilized on 3-aminopropyl-functionalized silica-nanoparticles (AP-SNs) covalently incorporated in the central channel of the device are recognized specifically by the anti-T. canis antibodies in the sample. The subsequent detection was achieved by adding a second antibody labeled with cadmium selenide zinc sulfide quantum dots (CdSe-ZnS QDs) specific to human IgG. The concentration of IgG anti-T. canis antibodies present in the serum sample was measured by LIF detector, using excitation lambda at 491 nm and emission at 540 nm. Relevant studies of experimental variables that affect the performance of microfluidic immunosensor for IgG anti-T. canis antibodies determination were done. Between them, the optimal flow rate, incubation time, concentration of TES to be immobilized, enzymatic activity and the amplification effect resulting from the incorporation of the AP-SNs, were studied The combination of two different nanomaterials; AP-SNs as bioaffinity supports and QDs as fluorescent labels, enabled us to achieve a useful alternative tool for T. canis diagnostic. SNs proved to be an excellent choice for optical sensing, increasing the active area and consequently the sensitivity. The total assay time was 30 minutes, having made LIF detection in less than 1 minute. The detection limit calculated for the proposed methodology was 0.12 ng mL-1 and the coefficients of intra- and inter-assay variation were less than 6%. The results show the usefulness of the developed immunosensor for the fast determination of IgG antibodies anti T. canis.
Fil: Messina, Germán Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Química de San Luis. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Química de San Luis; Argentina
Fil: Aranda, Pedro Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Química de San Luis. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Química de San Luis; Argentina
Fil: Pereira, Sirley Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Química de San Luis. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Química de San Luis; Argentina
Fil: Bertolino, Franco Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Química de San Luis. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Química de San Luis; Argentina
Fil: Raba, Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Química de San Luis. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Química de San Luis; Argentina
description Toxocariasis, one of the most common zoonotic infection worldwide, is caused by Toxocara canis (T. canis), or less commonly, Toxocara cati [1,2]. In humans, the infection is acquired by oral route through accidental ingestion of infective eggs from soil-contaminated hands, consumption of poorly sanitized vegetables and raw or undercooked meats [3,4]. Toxocara infective eggs hatch into the first portion of the intestine. Subsequently, the juvenile stages are distributed throughout the body, generating symptoms from mild to severe manifestations. The possibility of early diagnosis is of great importance, allowing proper management and treatment of patients suffering from toxocariasis. In last years, nanotechnology has contributed to the development of miniaturized immunosensor-based devices with high-throughput analytical properties [5,6]. Different nanomaterials such as quantum dots (QDs), silica nanoparticles (SNs), and other nanoparticles have emerged as promising alternatives for a wide range of immunosensors applications. The objective of this work was to develop a microfluidic immunosensor that include the use of nanomaterials for the quantitative determination of IgG antibodies to IgG anti-T.canis. For the development of the microfluidic immunosensor, excretory-secretory antigens from T. canis second-stage larvae (TES) were obtained according to the technique described by Gillespie (1995) [7]. The IgG anti-T.canis antibodies detection in serum samples were carried out using a non-competitive format immunoassay. TES immobilized on 3-aminopropyl-functionalized silica-nanoparticles (AP-SNs) covalently incorporated in the central channel of the device are recognized specifically by the anti-T. canis antibodies in the sample. The subsequent detection was achieved by adding a second antibody labeled with cadmium selenide zinc sulfide quantum dots (CdSe-ZnS QDs) specific to human IgG. The concentration of IgG anti-T. canis antibodies present in the serum sample was measured by LIF detector, using excitation lambda at 491 nm and emission at 540 nm. Relevant studies of experimental variables that affect the performance of microfluidic immunosensor for IgG anti-T. canis antibodies determination were done. Between them, the optimal flow rate, incubation time, concentration of TES to be immobilized, enzymatic activity and the amplification effect resulting from the incorporation of the AP-SNs, were studied The combination of two different nanomaterials; AP-SNs as bioaffinity supports and QDs as fluorescent labels, enabled us to achieve a useful alternative tool for T. canis diagnostic. SNs proved to be an excellent choice for optical sensing, increasing the active area and consequently the sensitivity. The total assay time was 30 minutes, having made LIF detection in less than 1 minute. The detection limit calculated for the proposed methodology was 0.12 ng mL-1 and the coefficients of intra- and inter-assay variation were less than 6%. The results show the usefulness of the developed immunosensor for the fast determination of IgG antibodies anti T. canis.
publishDate 2017
dc.date.none.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/bookPart
http://purl.org/coar/resource_type/c_3248
info:ar-repo/semantics/parteDeLibro
status_str publishedVersion
format bookPart
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/152142
Messina, Germán Alejandro; Aranda, Pedro Rodolfo; Pereira, Sirley Vanesa; Bertolino, Franco Adrián; Raba, Julio; LIF based fluorescent immunosensor using AP-SNs and QDs for quantitation of IgG anti Toxocara canis in human serum samples; TechConnect; 3; 2017; 192-194
978-0-9988782-0-1
CONICET Digital
CONICET
url http://hdl.handle.net/11336/152142
identifier_str_mv Messina, Germán Alejandro; Aranda, Pedro Rodolfo; Pereira, Sirley Vanesa; Bertolino, Franco Adrián; Raba, Julio; LIF based fluorescent immunosensor using AP-SNs and QDs for quantitation of IgG anti Toxocara canis in human serum samples; TechConnect; 3; 2017; 192-194
978-0-9988782-0-1
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://briefs.techconnect.org/papers/lif-based-fluorescent-immunosensor-using-ap-sns-and-qds-for-quantitation-of-igg-anti-toxocara-canis-in-human-serum-samples/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv TechConnect
publisher.none.fl_str_mv TechConnect
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613400647172096
score 13.070432