Solving a sparse system using linear algebra
- Autores
- Massri, Cesar Dario
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We give a new theoretical tool to solve sparse systems with finitely many solutions. It is based on toric varieties and basic linear algebra; eigenvalues, eigenvectors and coefficient matrices. We adapt Eigenvalue theorem and Eigenvector theorem to work with a canonical rectangular matrix (the first Koszul map) and prove that these new theorems serve to solve overdetermined sparse systems and to count the expected number of solutions.
Fil: Massri, Cesar Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina - Materia
-
Multiplication Matrix
Eigenvector
Sparse System
Toric Varieties - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18860
Ver los metadatos del registro completo
id |
CONICETDig_3add1f4be0e6c9d870bba0584b5d77d6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18860 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Solving a sparse system using linear algebraMassri, Cesar DarioMultiplication MatrixEigenvectorSparse SystemToric Varietieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We give a new theoretical tool to solve sparse systems with finitely many solutions. It is based on toric varieties and basic linear algebra; eigenvalues, eigenvectors and coefficient matrices. We adapt Eigenvalue theorem and Eigenvector theorem to work with a canonical rectangular matrix (the first Koszul map) and prove that these new theorems serve to solve overdetermined sparse systems and to count the expected number of solutions.Fil: Massri, Cesar Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaElsevier2015-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18860Massri, Cesar Dario; Solving a sparse system using linear algebra; Elsevier; Journal Of Symbolic Computation; 73; 4-2015; 157-1740747-7171CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jsc.2015.06.003info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0747717115000449info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1211.3715info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:38Zoai:ri.conicet.gov.ar:11336/18860instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:39.054CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Solving a sparse system using linear algebra |
title |
Solving a sparse system using linear algebra |
spellingShingle |
Solving a sparse system using linear algebra Massri, Cesar Dario Multiplication Matrix Eigenvector Sparse System Toric Varieties |
title_short |
Solving a sparse system using linear algebra |
title_full |
Solving a sparse system using linear algebra |
title_fullStr |
Solving a sparse system using linear algebra |
title_full_unstemmed |
Solving a sparse system using linear algebra |
title_sort |
Solving a sparse system using linear algebra |
dc.creator.none.fl_str_mv |
Massri, Cesar Dario |
author |
Massri, Cesar Dario |
author_facet |
Massri, Cesar Dario |
author_role |
author |
dc.subject.none.fl_str_mv |
Multiplication Matrix Eigenvector Sparse System Toric Varieties |
topic |
Multiplication Matrix Eigenvector Sparse System Toric Varieties |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We give a new theoretical tool to solve sparse systems with finitely many solutions. It is based on toric varieties and basic linear algebra; eigenvalues, eigenvectors and coefficient matrices. We adapt Eigenvalue theorem and Eigenvector theorem to work with a canonical rectangular matrix (the first Koszul map) and prove that these new theorems serve to solve overdetermined sparse systems and to count the expected number of solutions. Fil: Massri, Cesar Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina |
description |
We give a new theoretical tool to solve sparse systems with finitely many solutions. It is based on toric varieties and basic linear algebra; eigenvalues, eigenvectors and coefficient matrices. We adapt Eigenvalue theorem and Eigenvector theorem to work with a canonical rectangular matrix (the first Koszul map) and prove that these new theorems serve to solve overdetermined sparse systems and to count the expected number of solutions. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18860 Massri, Cesar Dario; Solving a sparse system using linear algebra; Elsevier; Journal Of Symbolic Computation; 73; 4-2015; 157-174 0747-7171 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18860 |
identifier_str_mv |
Massri, Cesar Dario; Solving a sparse system using linear algebra; Elsevier; Journal Of Symbolic Computation; 73; 4-2015; 157-174 0747-7171 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jsc.2015.06.003 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0747717115000449 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1211.3715 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269920782450688 |
score |
13.13397 |