Learning Modifies Odor Mixture Processing to Improve Detection of Relevant Components
- Autores
- Chen, J. Y.; Marachlian, Emiliano; Assisi, C.; Huerta, R.; Smith, B. H.; Locatelli, Fernando Federico; Bazhenov, M.
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Honey bees have a rich repertoire of olfactory learning behaviors, and they therefore are an excellent model to study plasticity in olfactory circuits. Recent behavioral, physiological, and molecular evidence suggested that the antennal lobe, the first relay of the olfactory system in insects and analog to the olfactory bulb in vertebrates, is involved in associative and nonassociative olfactory learning. Here we use calcium imaging to reveal how responses across antennal lobe projection neurons change after association of an input odor with appetitive reinforcement. After appetitive conditioning to 1-hexanol, the representation of an odor mixture containing 1-hexanol becomes more similar to this odor and less similar to the background odor acetophenone. We then apply computational modeling to investigate how changes in synaptic connectivity can account for the observed plasticity. Our study suggests that experience-dependent modulation of inhibitory interactions in the antennal lobe aids perception of salient odor components mixed with behaviorally irrelevant background odors.
Fil: Chen, J. Y.. University of California; Estados Unidos
Fil: Marachlian, Emiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Assisi, C.. University of California; Estados Unidos
Fil: Huerta, R.. University of California at San Diego; Estados Unidos
Fil: Smith, B. H.. Arizona State University; Estados Unidos
Fil: Locatelli, Fernando Federico. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina
Fil: Bazhenov, M.. University of California; Estados Unidos - Materia
-
olfaction
plasticity
coding
imaging - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/60637
Ver los metadatos del registro completo
| id |
CONICETDig_3aa60b6fab1dc673c7319a5698baba4f |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/60637 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Learning Modifies Odor Mixture Processing to Improve Detection of Relevant ComponentsChen, J. Y.Marachlian, EmilianoAssisi, C.Huerta, R.Smith, B. H.Locatelli, Fernando FedericoBazhenov, M.olfactionplasticitycodingimaginghttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Honey bees have a rich repertoire of olfactory learning behaviors, and they therefore are an excellent model to study plasticity in olfactory circuits. Recent behavioral, physiological, and molecular evidence suggested that the antennal lobe, the first relay of the olfactory system in insects and analog to the olfactory bulb in vertebrates, is involved in associative and nonassociative olfactory learning. Here we use calcium imaging to reveal how responses across antennal lobe projection neurons change after association of an input odor with appetitive reinforcement. After appetitive conditioning to 1-hexanol, the representation of an odor mixture containing 1-hexanol becomes more similar to this odor and less similar to the background odor acetophenone. We then apply computational modeling to investigate how changes in synaptic connectivity can account for the observed plasticity. Our study suggests that experience-dependent modulation of inhibitory interactions in the antennal lobe aids perception of salient odor components mixed with behaviorally irrelevant background odors.Fil: Chen, J. Y.. University of California; Estados UnidosFil: Marachlian, Emiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Assisi, C.. University of California; Estados UnidosFil: Huerta, R.. University of California at San Diego; Estados UnidosFil: Smith, B. H.. Arizona State University; Estados UnidosFil: Locatelli, Fernando Federico. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Bazhenov, M.. University of California; Estados UnidosSociety for Neuroscience2015-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60637Chen, J. Y.; Marachlian, Emiliano; Assisi, C.; Huerta, R.; Smith, B. H.; et al.; Learning Modifies Odor Mixture Processing to Improve Detection of Relevant Components; Society for Neuroscience; Journal of Neuroscience; 35; 1; 1-2015; 179-1970270-6474CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.jneurosci.org/content/35/1/179.shortinfo:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4287141/info:eu-repo/semantics/altIdentifier/doi/10.1523%2FJNEUROSCI.2345-14.2015info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:22:52Zoai:ri.conicet.gov.ar:11336/60637instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:22:52.944CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Learning Modifies Odor Mixture Processing to Improve Detection of Relevant Components |
| title |
Learning Modifies Odor Mixture Processing to Improve Detection of Relevant Components |
| spellingShingle |
Learning Modifies Odor Mixture Processing to Improve Detection of Relevant Components Chen, J. Y. olfaction plasticity coding imaging |
| title_short |
Learning Modifies Odor Mixture Processing to Improve Detection of Relevant Components |
| title_full |
Learning Modifies Odor Mixture Processing to Improve Detection of Relevant Components |
| title_fullStr |
Learning Modifies Odor Mixture Processing to Improve Detection of Relevant Components |
| title_full_unstemmed |
Learning Modifies Odor Mixture Processing to Improve Detection of Relevant Components |
| title_sort |
Learning Modifies Odor Mixture Processing to Improve Detection of Relevant Components |
| dc.creator.none.fl_str_mv |
Chen, J. Y. Marachlian, Emiliano Assisi, C. Huerta, R. Smith, B. H. Locatelli, Fernando Federico Bazhenov, M. |
| author |
Chen, J. Y. |
| author_facet |
Chen, J. Y. Marachlian, Emiliano Assisi, C. Huerta, R. Smith, B. H. Locatelli, Fernando Federico Bazhenov, M. |
| author_role |
author |
| author2 |
Marachlian, Emiliano Assisi, C. Huerta, R. Smith, B. H. Locatelli, Fernando Federico Bazhenov, M. |
| author2_role |
author author author author author author |
| dc.subject.none.fl_str_mv |
olfaction plasticity coding imaging |
| topic |
olfaction plasticity coding imaging |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Honey bees have a rich repertoire of olfactory learning behaviors, and they therefore are an excellent model to study plasticity in olfactory circuits. Recent behavioral, physiological, and molecular evidence suggested that the antennal lobe, the first relay of the olfactory system in insects and analog to the olfactory bulb in vertebrates, is involved in associative and nonassociative olfactory learning. Here we use calcium imaging to reveal how responses across antennal lobe projection neurons change after association of an input odor with appetitive reinforcement. After appetitive conditioning to 1-hexanol, the representation of an odor mixture containing 1-hexanol becomes more similar to this odor and less similar to the background odor acetophenone. We then apply computational modeling to investigate how changes in synaptic connectivity can account for the observed plasticity. Our study suggests that experience-dependent modulation of inhibitory interactions in the antennal lobe aids perception of salient odor components mixed with behaviorally irrelevant background odors. Fil: Chen, J. Y.. University of California; Estados Unidos Fil: Marachlian, Emiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina Fil: Assisi, C.. University of California; Estados Unidos Fil: Huerta, R.. University of California at San Diego; Estados Unidos Fil: Smith, B. H.. Arizona State University; Estados Unidos Fil: Locatelli, Fernando Federico. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina Fil: Bazhenov, M.. University of California; Estados Unidos |
| description |
Honey bees have a rich repertoire of olfactory learning behaviors, and they therefore are an excellent model to study plasticity in olfactory circuits. Recent behavioral, physiological, and molecular evidence suggested that the antennal lobe, the first relay of the olfactory system in insects and analog to the olfactory bulb in vertebrates, is involved in associative and nonassociative olfactory learning. Here we use calcium imaging to reveal how responses across antennal lobe projection neurons change after association of an input odor with appetitive reinforcement. After appetitive conditioning to 1-hexanol, the representation of an odor mixture containing 1-hexanol becomes more similar to this odor and less similar to the background odor acetophenone. We then apply computational modeling to investigate how changes in synaptic connectivity can account for the observed plasticity. Our study suggests that experience-dependent modulation of inhibitory interactions in the antennal lobe aids perception of salient odor components mixed with behaviorally irrelevant background odors. |
| publishDate |
2015 |
| dc.date.none.fl_str_mv |
2015-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/60637 Chen, J. Y.; Marachlian, Emiliano; Assisi, C.; Huerta, R.; Smith, B. H.; et al.; Learning Modifies Odor Mixture Processing to Improve Detection of Relevant Components; Society for Neuroscience; Journal of Neuroscience; 35; 1; 1-2015; 179-197 0270-6474 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/60637 |
| identifier_str_mv |
Chen, J. Y.; Marachlian, Emiliano; Assisi, C.; Huerta, R.; Smith, B. H.; et al.; Learning Modifies Odor Mixture Processing to Improve Detection of Relevant Components; Society for Neuroscience; Journal of Neuroscience; 35; 1; 1-2015; 179-197 0270-6474 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.jneurosci.org/content/35/1/179.short info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4287141/ info:eu-repo/semantics/altIdentifier/doi/10.1523%2FJNEUROSCI.2345-14.2015 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Society for Neuroscience |
| publisher.none.fl_str_mv |
Society for Neuroscience |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781751429431296 |
| score |
12.982451 |