H-bonded network rearrangements in the S0, S1 and D0 states of neutral and cationic p-cresol(H2O)(NH3) complexes

Autores
Hernández, Federico Javier; Capello, Marcela Carolina; Oldani, Andres Nicolas; Ferrero, Juan Carlos; Maitre, Philippe; Pino, Gustavo Ariel
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The H-bonded network rearrangements in the S0, S1 and D0 states of the neutral and cationic p-CreOH(H2O)(NH3) complexes were studied experimentally by means of (1 + 1)/(1 + 10 ) REMPI (Resonantly Enhanced MultiPhoton Ionization) and time resolved LIF (Laser Induced Fluorescence) spectroscopies combined with DFT (Density Functional Theory) calculations at the B3LYP/ 6-311G++(d,p) level. A comparison of the rearrangement process of the H-bonded network in the three states is given. Two cyclic H-bonded isomers were found on the S0 potential energy surface and the results indicate that the rearrangement in this state is unlikely at the temperature of the supersonic expansion due to the presence of a high-energy barrier (7503 cm1 ). On the other hand, the re-determination of the S1 excited state lifetimes confirms that neither the H-bonded rearrangement nor the excited state hydrogen transfer (ESHT) reaction takes place in the S1 state at the excitation energies of this work. Thus, it is concluded that the absorption of the second photon to reach the D0 state takes place from the S1 state of the cyclic-(OH–OH2–NH3) isomer. A preferential evaporation of H2O upon vertical ionization of the cyclic-(OH–OH2–NH3) isomer is observed which is consistent with a statistical redistribution of the internal energy. Nevertheless, our theoretical calculations suggest that initial excitation of the H-bonded network rearrangement modes may also play a role to leave the H2O molecule as a terminal moiety in a chain-(OH–NH3–OH2) + isomer. The reaction pathway for the solvent rearrangement involves a double proton transfer process with a very low energy barrier (575 cm1 ) that is overcome at the vertical ionization energy of the complex.
Fil: Hernández, Federico Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Capello, Marcela Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Oldani, Andres Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Ferrero, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Maitre, Philippe. Centre National de la Recherche Scientifique; Francia. Université Paris Sud; Francia
Fil: Pino, Gustavo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Materia
H-bond
spectroscopy
solvent evaporation
DFT calculation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/241273

id CONICETDig_39fefa7a84dd1e31bdde532a7438a606
oai_identifier_str oai:ri.conicet.gov.ar:11336/241273
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling H-bonded network rearrangements in the S0, S1 and D0 states of neutral and cationic p-cresol(H2O)(NH3) complexesHernández, Federico JavierCapello, Marcela CarolinaOldani, Andres NicolasFerrero, Juan CarlosMaitre, PhilippePino, Gustavo ArielH-bondspectroscopysolvent evaporationDFT calculationhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The H-bonded network rearrangements in the S0, S1 and D0 states of the neutral and cationic p-CreOH(H2O)(NH3) complexes were studied experimentally by means of (1 + 1)/(1 + 10 ) REMPI (Resonantly Enhanced MultiPhoton Ionization) and time resolved LIF (Laser Induced Fluorescence) spectroscopies combined with DFT (Density Functional Theory) calculations at the B3LYP/ 6-311G++(d,p) level. A comparison of the rearrangement process of the H-bonded network in the three states is given. Two cyclic H-bonded isomers were found on the S0 potential energy surface and the results indicate that the rearrangement in this state is unlikely at the temperature of the supersonic expansion due to the presence of a high-energy barrier (7503 cm1 ). On the other hand, the re-determination of the S1 excited state lifetimes confirms that neither the H-bonded rearrangement nor the excited state hydrogen transfer (ESHT) reaction takes place in the S1 state at the excitation energies of this work. Thus, it is concluded that the absorption of the second photon to reach the D0 state takes place from the S1 state of the cyclic-(OH–OH2–NH3) isomer. A preferential evaporation of H2O upon vertical ionization of the cyclic-(OH–OH2–NH3) isomer is observed which is consistent with a statistical redistribution of the internal energy. Nevertheless, our theoretical calculations suggest that initial excitation of the H-bonded network rearrangement modes may also play a role to leave the H2O molecule as a terminal moiety in a chain-(OH–NH3–OH2) + isomer. The reaction pathway for the solvent rearrangement involves a double proton transfer process with a very low energy barrier (575 cm1 ) that is overcome at the vertical ionization energy of the complex.Fil: Hernández, Federico Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Capello, Marcela Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Oldani, Andres Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Ferrero, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Maitre, Philippe. Centre National de la Recherche Scientifique; Francia. Université Paris Sud; FranciaFil: Pino, Gustavo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaRoyal Society of Chemistry2012-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/241273Hernández, Federico Javier; Capello, Marcela Carolina; Oldani, Andres Nicolas; Ferrero, Juan Carlos; Maitre, Philippe; et al.; H-bonded network rearrangements in the S0, S1 and D0 states of neutral and cationic p-cresol(H2O)(NH3) complexes; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 14; 25; 1-2012; 1-111463-9076CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2012/cp/c2cp23586binfo:eu-repo/semantics/altIdentifier/doi/10.1039/C2CP23586Binfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:18:51Zoai:ri.conicet.gov.ar:11336/241273instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:18:51.598CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv H-bonded network rearrangements in the S0, S1 and D0 states of neutral and cationic p-cresol(H2O)(NH3) complexes
title H-bonded network rearrangements in the S0, S1 and D0 states of neutral and cationic p-cresol(H2O)(NH3) complexes
spellingShingle H-bonded network rearrangements in the S0, S1 and D0 states of neutral and cationic p-cresol(H2O)(NH3) complexes
Hernández, Federico Javier
H-bond
spectroscopy
solvent evaporation
DFT calculation
title_short H-bonded network rearrangements in the S0, S1 and D0 states of neutral and cationic p-cresol(H2O)(NH3) complexes
title_full H-bonded network rearrangements in the S0, S1 and D0 states of neutral and cationic p-cresol(H2O)(NH3) complexes
title_fullStr H-bonded network rearrangements in the S0, S1 and D0 states of neutral and cationic p-cresol(H2O)(NH3) complexes
title_full_unstemmed H-bonded network rearrangements in the S0, S1 and D0 states of neutral and cationic p-cresol(H2O)(NH3) complexes
title_sort H-bonded network rearrangements in the S0, S1 and D0 states of neutral and cationic p-cresol(H2O)(NH3) complexes
dc.creator.none.fl_str_mv Hernández, Federico Javier
Capello, Marcela Carolina
Oldani, Andres Nicolas
Ferrero, Juan Carlos
Maitre, Philippe
Pino, Gustavo Ariel
author Hernández, Federico Javier
author_facet Hernández, Federico Javier
Capello, Marcela Carolina
Oldani, Andres Nicolas
Ferrero, Juan Carlos
Maitre, Philippe
Pino, Gustavo Ariel
author_role author
author2 Capello, Marcela Carolina
Oldani, Andres Nicolas
Ferrero, Juan Carlos
Maitre, Philippe
Pino, Gustavo Ariel
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv H-bond
spectroscopy
solvent evaporation
DFT calculation
topic H-bond
spectroscopy
solvent evaporation
DFT calculation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The H-bonded network rearrangements in the S0, S1 and D0 states of the neutral and cationic p-CreOH(H2O)(NH3) complexes were studied experimentally by means of (1 + 1)/(1 + 10 ) REMPI (Resonantly Enhanced MultiPhoton Ionization) and time resolved LIF (Laser Induced Fluorescence) spectroscopies combined with DFT (Density Functional Theory) calculations at the B3LYP/ 6-311G++(d,p) level. A comparison of the rearrangement process of the H-bonded network in the three states is given. Two cyclic H-bonded isomers were found on the S0 potential energy surface and the results indicate that the rearrangement in this state is unlikely at the temperature of the supersonic expansion due to the presence of a high-energy barrier (7503 cm1 ). On the other hand, the re-determination of the S1 excited state lifetimes confirms that neither the H-bonded rearrangement nor the excited state hydrogen transfer (ESHT) reaction takes place in the S1 state at the excitation energies of this work. Thus, it is concluded that the absorption of the second photon to reach the D0 state takes place from the S1 state of the cyclic-(OH–OH2–NH3) isomer. A preferential evaporation of H2O upon vertical ionization of the cyclic-(OH–OH2–NH3) isomer is observed which is consistent with a statistical redistribution of the internal energy. Nevertheless, our theoretical calculations suggest that initial excitation of the H-bonded network rearrangement modes may also play a role to leave the H2O molecule as a terminal moiety in a chain-(OH–NH3–OH2) + isomer. The reaction pathway for the solvent rearrangement involves a double proton transfer process with a very low energy barrier (575 cm1 ) that is overcome at the vertical ionization energy of the complex.
Fil: Hernández, Federico Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Capello, Marcela Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Oldani, Andres Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Ferrero, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Maitre, Philippe. Centre National de la Recherche Scientifique; Francia. Université Paris Sud; Francia
Fil: Pino, Gustavo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
description The H-bonded network rearrangements in the S0, S1 and D0 states of the neutral and cationic p-CreOH(H2O)(NH3) complexes were studied experimentally by means of (1 + 1)/(1 + 10 ) REMPI (Resonantly Enhanced MultiPhoton Ionization) and time resolved LIF (Laser Induced Fluorescence) spectroscopies combined with DFT (Density Functional Theory) calculations at the B3LYP/ 6-311G++(d,p) level. A comparison of the rearrangement process of the H-bonded network in the three states is given. Two cyclic H-bonded isomers were found on the S0 potential energy surface and the results indicate that the rearrangement in this state is unlikely at the temperature of the supersonic expansion due to the presence of a high-energy barrier (7503 cm1 ). On the other hand, the re-determination of the S1 excited state lifetimes confirms that neither the H-bonded rearrangement nor the excited state hydrogen transfer (ESHT) reaction takes place in the S1 state at the excitation energies of this work. Thus, it is concluded that the absorption of the second photon to reach the D0 state takes place from the S1 state of the cyclic-(OH–OH2–NH3) isomer. A preferential evaporation of H2O upon vertical ionization of the cyclic-(OH–OH2–NH3) isomer is observed which is consistent with a statistical redistribution of the internal energy. Nevertheless, our theoretical calculations suggest that initial excitation of the H-bonded network rearrangement modes may also play a role to leave the H2O molecule as a terminal moiety in a chain-(OH–NH3–OH2) + isomer. The reaction pathway for the solvent rearrangement involves a double proton transfer process with a very low energy barrier (575 cm1 ) that is overcome at the vertical ionization energy of the complex.
publishDate 2012
dc.date.none.fl_str_mv 2012-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/241273
Hernández, Federico Javier; Capello, Marcela Carolina; Oldani, Andres Nicolas; Ferrero, Juan Carlos; Maitre, Philippe; et al.; H-bonded network rearrangements in the S0, S1 and D0 states of neutral and cationic p-cresol(H2O)(NH3) complexes; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 14; 25; 1-2012; 1-11
1463-9076
CONICET Digital
CONICET
url http://hdl.handle.net/11336/241273
identifier_str_mv Hernández, Federico Javier; Capello, Marcela Carolina; Oldani, Andres Nicolas; Ferrero, Juan Carlos; Maitre, Philippe; et al.; H-bonded network rearrangements in the S0, S1 and D0 states of neutral and cationic p-cresol(H2O)(NH3) complexes; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 14; 25; 1-2012; 1-11
1463-9076
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2012/cp/c2cp23586b
info:eu-repo/semantics/altIdentifier/doi/10.1039/C2CP23586B
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614154991697920
score 13.070432