NMR spin–spin coupling constants in hydrogen-bonded glycine clusters

Autores
Chaudhuri, Puspitapallab; Canuto, Sylvio; Provasi, Patricio Federico
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The influence of the hydrogen bond formation on the NMR spin–spin coupling constants (SSCC), including the Fermi contact (FC), the diamagnetic spin-orbit, the paramagnetic spin-orbit, and the spin dipole term, has been investigated systematically for the homogeneous glycine cluster, in gas phase, containing up to three monomers. The one-bond and two-bond SSCCs for several intramolecular (through covalent bond) and intermolecular (across the hydrogen-bond) atomic pairs are calculated employing the density functional theory with B3LYP and KT3 functionals and different types of extended basis sets. The ab initio SOPPA(CCSD) is used as benchmark for the SSCCs of the glycine monomer. The hydrogen bonding is found to cause significant variations in the one-bond SSCCs, mostly due to contribution from electronic interactions. However, the nature of variation depends on the type of oxygen atom (proton-acceptor or proton-donor) present in the interaction. Two-bond intermolecular coupling constants vary more than the corresponding one-bond constants when the size of the cluster increases. Among the four Ramsey terms that constitute the total SSCC, the FC term is the most dominant contributor followed by the paramagnetic spin-orbit term in all one-bond interaction.
Fil: Chaudhuri, Puspitapallab. Universidade de Sao Paulo; Brasil
Fil: Canuto, Sylvio. Universidade de Sao Paulo; Brasil
Fil: Provasi, Patricio Federico. Universidad Nacional del Nordeste; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina
Materia
DFT
GLYCINE
HYDROGEN BOND
SOPPA (CCSD)
SPIN–SPIN COUPLING CONSTANT
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/86674

id CONICETDig_f834ce7d0243a4e79a7ed8b80872639a
oai_identifier_str oai:ri.conicet.gov.ar:11336/86674
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling NMR spin–spin coupling constants in hydrogen-bonded glycine clustersChaudhuri, PuspitapallabCanuto, SylvioProvasi, Patricio FedericoDFTGLYCINEHYDROGEN BONDSOPPA (CCSD)SPIN–SPIN COUPLING CONSTANThttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The influence of the hydrogen bond formation on the NMR spin–spin coupling constants (SSCC), including the Fermi contact (FC), the diamagnetic spin-orbit, the paramagnetic spin-orbit, and the spin dipole term, has been investigated systematically for the homogeneous glycine cluster, in gas phase, containing up to three monomers. The one-bond and two-bond SSCCs for several intramolecular (through covalent bond) and intermolecular (across the hydrogen-bond) atomic pairs are calculated employing the density functional theory with B3LYP and KT3 functionals and different types of extended basis sets. The ab initio SOPPA(CCSD) is used as benchmark for the SSCCs of the glycine monomer. The hydrogen bonding is found to cause significant variations in the one-bond SSCCs, mostly due to contribution from electronic interactions. However, the nature of variation depends on the type of oxygen atom (proton-acceptor or proton-donor) present in the interaction. Two-bond intermolecular coupling constants vary more than the corresponding one-bond constants when the size of the cluster increases. Among the four Ramsey terms that constitute the total SSCC, the FC term is the most dominant contributor followed by the paramagnetic spin-orbit term in all one-bond interaction.Fil: Chaudhuri, Puspitapallab. Universidade de Sao Paulo; BrasilFil: Canuto, Sylvio. Universidade de Sao Paulo; BrasilFil: Provasi, Patricio Federico. Universidad Nacional del Nordeste; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; ArgentinaJohn Wiley & Sons Inc2018-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/86674Chaudhuri, Puspitapallab; Canuto, Sylvio; Provasi, Patricio Federico; NMR spin–spin coupling constants in hydrogen-bonded glycine clusters; John Wiley & Sons Inc; International Journal of Quantum Chemistry; 118; 15; 8-2018; 1-140020-76080020-7608CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/qua.25608info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.25608info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:46:39Zoai:ri.conicet.gov.ar:11336/86674instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:46:40.109CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv NMR spin–spin coupling constants in hydrogen-bonded glycine clusters
title NMR spin–spin coupling constants in hydrogen-bonded glycine clusters
spellingShingle NMR spin–spin coupling constants in hydrogen-bonded glycine clusters
Chaudhuri, Puspitapallab
DFT
GLYCINE
HYDROGEN BOND
SOPPA (CCSD)
SPIN–SPIN COUPLING CONSTANT
title_short NMR spin–spin coupling constants in hydrogen-bonded glycine clusters
title_full NMR spin–spin coupling constants in hydrogen-bonded glycine clusters
title_fullStr NMR spin–spin coupling constants in hydrogen-bonded glycine clusters
title_full_unstemmed NMR spin–spin coupling constants in hydrogen-bonded glycine clusters
title_sort NMR spin–spin coupling constants in hydrogen-bonded glycine clusters
dc.creator.none.fl_str_mv Chaudhuri, Puspitapallab
Canuto, Sylvio
Provasi, Patricio Federico
author Chaudhuri, Puspitapallab
author_facet Chaudhuri, Puspitapallab
Canuto, Sylvio
Provasi, Patricio Federico
author_role author
author2 Canuto, Sylvio
Provasi, Patricio Federico
author2_role author
author
dc.subject.none.fl_str_mv DFT
GLYCINE
HYDROGEN BOND
SOPPA (CCSD)
SPIN–SPIN COUPLING CONSTANT
topic DFT
GLYCINE
HYDROGEN BOND
SOPPA (CCSD)
SPIN–SPIN COUPLING CONSTANT
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The influence of the hydrogen bond formation on the NMR spin–spin coupling constants (SSCC), including the Fermi contact (FC), the diamagnetic spin-orbit, the paramagnetic spin-orbit, and the spin dipole term, has been investigated systematically for the homogeneous glycine cluster, in gas phase, containing up to three monomers. The one-bond and two-bond SSCCs for several intramolecular (through covalent bond) and intermolecular (across the hydrogen-bond) atomic pairs are calculated employing the density functional theory with B3LYP and KT3 functionals and different types of extended basis sets. The ab initio SOPPA(CCSD) is used as benchmark for the SSCCs of the glycine monomer. The hydrogen bonding is found to cause significant variations in the one-bond SSCCs, mostly due to contribution from electronic interactions. However, the nature of variation depends on the type of oxygen atom (proton-acceptor or proton-donor) present in the interaction. Two-bond intermolecular coupling constants vary more than the corresponding one-bond constants when the size of the cluster increases. Among the four Ramsey terms that constitute the total SSCC, the FC term is the most dominant contributor followed by the paramagnetic spin-orbit term in all one-bond interaction.
Fil: Chaudhuri, Puspitapallab. Universidade de Sao Paulo; Brasil
Fil: Canuto, Sylvio. Universidade de Sao Paulo; Brasil
Fil: Provasi, Patricio Federico. Universidad Nacional del Nordeste; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina
description The influence of the hydrogen bond formation on the NMR spin–spin coupling constants (SSCC), including the Fermi contact (FC), the diamagnetic spin-orbit, the paramagnetic spin-orbit, and the spin dipole term, has been investigated systematically for the homogeneous glycine cluster, in gas phase, containing up to three monomers. The one-bond and two-bond SSCCs for several intramolecular (through covalent bond) and intermolecular (across the hydrogen-bond) atomic pairs are calculated employing the density functional theory with B3LYP and KT3 functionals and different types of extended basis sets. The ab initio SOPPA(CCSD) is used as benchmark for the SSCCs of the glycine monomer. The hydrogen bonding is found to cause significant variations in the one-bond SSCCs, mostly due to contribution from electronic interactions. However, the nature of variation depends on the type of oxygen atom (proton-acceptor or proton-donor) present in the interaction. Two-bond intermolecular coupling constants vary more than the corresponding one-bond constants when the size of the cluster increases. Among the four Ramsey terms that constitute the total SSCC, the FC term is the most dominant contributor followed by the paramagnetic spin-orbit term in all one-bond interaction.
publishDate 2018
dc.date.none.fl_str_mv 2018-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/86674
Chaudhuri, Puspitapallab; Canuto, Sylvio; Provasi, Patricio Federico; NMR spin–spin coupling constants in hydrogen-bonded glycine clusters; John Wiley & Sons Inc; International Journal of Quantum Chemistry; 118; 15; 8-2018; 1-14
0020-7608
0020-7608
CONICET Digital
CONICET
url http://hdl.handle.net/11336/86674
identifier_str_mv Chaudhuri, Puspitapallab; Canuto, Sylvio; Provasi, Patricio Federico; NMR spin–spin coupling constants in hydrogen-bonded glycine clusters; John Wiley & Sons Inc; International Journal of Quantum Chemistry; 118; 15; 8-2018; 1-14
0020-7608
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1002/qua.25608
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.25608
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv John Wiley & Sons Inc
publisher.none.fl_str_mv John Wiley & Sons Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082980713332736
score 13.22299