Estimates for mahler's measure of a linear form

Autores
Rodriguez Villegas, Fernando; Toledano, Ricardo Daniel; Vaaler, Jeffrey D.
Año de publicación
2004
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let La(z) = a1z1+a2z2 + ... + aNzN be a linear form in N complex variables z1,z2,...,zN with non-zero coefficients. We establish several estimates for the logarithmic Mahler measure of La. In general, we show that the logarithmic Mahler measure of La(x) and the logarithm of the norm of a differ by a bounded amount that is independent of N. We prove a further estimate which is useful for making an approximate numerical evaluation of the logarithmic Mahler measure.
Fil: Rodriguez Villegas, Fernando. University of Texas at Austin; Estados Unidos
Fil: Toledano, Ricardo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Vaaler, Jeffrey D.. University of Texas at Austin; Estados Unidos
Materia
APPROXIMATION
LINEAR FORM
MAHLER MEASURE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/100649

id CONICETDig_3929f06e137e0892e88dc799d96d7805
oai_identifier_str oai:ri.conicet.gov.ar:11336/100649
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Estimates for mahler's measure of a linear formRodriguez Villegas, FernandoToledano, Ricardo DanielVaaler, Jeffrey D.APPROXIMATIONLINEAR FORMMAHLER MEASUREhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let La(z) = a1z1+a2z2 + ... + aNzN be a linear form in N complex variables z1,z2,...,zN with non-zero coefficients. We establish several estimates for the logarithmic Mahler measure of La. In general, we show that the logarithmic Mahler measure of La(x) and the logarithm of the norm of a differ by a bounded amount that is independent of N. We prove a further estimate which is useful for making an approximate numerical evaluation of the logarithmic Mahler measure.Fil: Rodriguez Villegas, Fernando. University of Texas at Austin; Estados UnidosFil: Toledano, Ricardo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Vaaler, Jeffrey D.. University of Texas at Austin; Estados UnidosCambridge University Press2004-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100649Rodriguez Villegas, Fernando; Toledano, Ricardo Daniel; Vaaler, Jeffrey D.; Estimates for mahler's measure of a linear form; Cambridge University Press; Proceedings Of The Edinburgh Mathematical Society; 47; 2; 6-2004; 473-4940013-0915CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1017/S0013091503000701info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:24:36Zoai:ri.conicet.gov.ar:11336/100649instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:24:36.385CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Estimates for mahler's measure of a linear form
title Estimates for mahler's measure of a linear form
spellingShingle Estimates for mahler's measure of a linear form
Rodriguez Villegas, Fernando
APPROXIMATION
LINEAR FORM
MAHLER MEASURE
title_short Estimates for mahler's measure of a linear form
title_full Estimates for mahler's measure of a linear form
title_fullStr Estimates for mahler's measure of a linear form
title_full_unstemmed Estimates for mahler's measure of a linear form
title_sort Estimates for mahler's measure of a linear form
dc.creator.none.fl_str_mv Rodriguez Villegas, Fernando
Toledano, Ricardo Daniel
Vaaler, Jeffrey D.
author Rodriguez Villegas, Fernando
author_facet Rodriguez Villegas, Fernando
Toledano, Ricardo Daniel
Vaaler, Jeffrey D.
author_role author
author2 Toledano, Ricardo Daniel
Vaaler, Jeffrey D.
author2_role author
author
dc.subject.none.fl_str_mv APPROXIMATION
LINEAR FORM
MAHLER MEASURE
topic APPROXIMATION
LINEAR FORM
MAHLER MEASURE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let La(z) = a1z1+a2z2 + ... + aNzN be a linear form in N complex variables z1,z2,...,zN with non-zero coefficients. We establish several estimates for the logarithmic Mahler measure of La. In general, we show that the logarithmic Mahler measure of La(x) and the logarithm of the norm of a differ by a bounded amount that is independent of N. We prove a further estimate which is useful for making an approximate numerical evaluation of the logarithmic Mahler measure.
Fil: Rodriguez Villegas, Fernando. University of Texas at Austin; Estados Unidos
Fil: Toledano, Ricardo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Vaaler, Jeffrey D.. University of Texas at Austin; Estados Unidos
description Let La(z) = a1z1+a2z2 + ... + aNzN be a linear form in N complex variables z1,z2,...,zN with non-zero coefficients. We establish several estimates for the logarithmic Mahler measure of La. In general, we show that the logarithmic Mahler measure of La(x) and the logarithm of the norm of a differ by a bounded amount that is independent of N. We prove a further estimate which is useful for making an approximate numerical evaluation of the logarithmic Mahler measure.
publishDate 2004
dc.date.none.fl_str_mv 2004-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/100649
Rodriguez Villegas, Fernando; Toledano, Ricardo Daniel; Vaaler, Jeffrey D.; Estimates for mahler's measure of a linear form; Cambridge University Press; Proceedings Of The Edinburgh Mathematical Society; 47; 2; 6-2004; 473-494
0013-0915
CONICET Digital
CONICET
url http://hdl.handle.net/11336/100649
identifier_str_mv Rodriguez Villegas, Fernando; Toledano, Ricardo Daniel; Vaaler, Jeffrey D.; Estimates for mahler's measure of a linear form; Cambridge University Press; Proceedings Of The Edinburgh Mathematical Society; 47; 2; 6-2004; 473-494
0013-0915
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1017/S0013091503000701
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Cambridge University Press
publisher.none.fl_str_mv Cambridge University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781786382663680
score 13.238319