Deciphering the global organization of clustering in real complex networks

Autores
Colomer de Simón, Pol; Serrano, María de Los Angeles; Beiro, Mariano Gastón; Alvarez Hamelin, Jose Ignacio; Boguñá, Marián
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We uncover the global organization of clustering in real complex networks. To this end, we ask whether triangles in real networks organize as in maximally random graphs with given degree and clustering distributions, or as in maximally ordered graph models where triangles are forced into modules. The answer comes by way of exploring m-core landscapes, where the m-core is defined, akin to the k-core, as the maximal subgraph with edges participating in at least m triangles. This property defines a set of nested subgraphs that, contrarily to k-cores, is able to distinguish between hierarchical and modular architectures. We find that the clustering organization in real networks is neither completely random nor ordered although, surprisingly, it is more random than modular. This supports the idea that the structure of real networks may in fact be the outcome of self-organized processes based on local optimization rules, in contrast to global optimization principles.
Fil: Colomer de Simón, Pol. Universidad de Barcelona; España
Fil: Serrano, María de Los Angeles. Universidad de Barcelona; España
Fil: Beiro, Mariano Gastón. Universidad de Buenos Aires. Facultad de Ingenieria. Departamento de Electronica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería; Argentina
Fil: Alvarez Hamelin, Jose Ignacio. Universidad de Buenos Aires. Facultad de Ingenieria. Departamento de Electronica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería; Argentina
Fil: Boguñá, Marián. Universidad de Barcelona; España
Materia
Phase transitions and critical phenomena
Complex networks
Nonlinear phenomena
Statistical physics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/12532

id CONICETDig_38877cacdd93e7eace99c0da00704a4d
oai_identifier_str oai:ri.conicet.gov.ar:11336/12532
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Deciphering the global organization of clustering in real complex networksColomer de Simón, PolSerrano, María de Los AngelesBeiro, Mariano GastónAlvarez Hamelin, Jose IgnacioBoguñá, MariánPhase transitions and critical phenomenaComplex networksNonlinear phenomenaStatistical physicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We uncover the global organization of clustering in real complex networks. To this end, we ask whether triangles in real networks organize as in maximally random graphs with given degree and clustering distributions, or as in maximally ordered graph models where triangles are forced into modules. The answer comes by way of exploring m-core landscapes, where the m-core is defined, akin to the k-core, as the maximal subgraph with edges participating in at least m triangles. This property defines a set of nested subgraphs that, contrarily to k-cores, is able to distinguish between hierarchical and modular architectures. We find that the clustering organization in real networks is neither completely random nor ordered although, surprisingly, it is more random than modular. This supports the idea that the structure of real networks may in fact be the outcome of self-organized processes based on local optimization rules, in contrast to global optimization principles.Fil: Colomer de Simón, Pol. Universidad de Barcelona; EspañaFil: Serrano, María de Los Angeles. Universidad de Barcelona; EspañaFil: Beiro, Mariano Gastón. Universidad de Buenos Aires. Facultad de Ingenieria. Departamento de Electronica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería; ArgentinaFil: Alvarez Hamelin, Jose Ignacio. Universidad de Buenos Aires. Facultad de Ingenieria. Departamento de Electronica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería; ArgentinaFil: Boguñá, Marián. Universidad de Barcelona; EspañaNature Publishing Group2013-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/12532Colomer de Simón, Pol; Serrano, María de Los Angeles; Beiro, Mariano Gastón; Alvarez Hamelin, Jose Ignacio; Boguñá, Marián; Deciphering the global organization of clustering in real complex networks; Nature Publishing Group; Scientific Reports; 3; 2517; 8-2013; 1-62045-2322enginfo:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/srep02517info:eu-repo/semantics/altIdentifier/doi/10.1038/srep02517info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:16:10Zoai:ri.conicet.gov.ar:11336/12532instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:16:11.215CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Deciphering the global organization of clustering in real complex networks
title Deciphering the global organization of clustering in real complex networks
spellingShingle Deciphering the global organization of clustering in real complex networks
Colomer de Simón, Pol
Phase transitions and critical phenomena
Complex networks
Nonlinear phenomena
Statistical physics
title_short Deciphering the global organization of clustering in real complex networks
title_full Deciphering the global organization of clustering in real complex networks
title_fullStr Deciphering the global organization of clustering in real complex networks
title_full_unstemmed Deciphering the global organization of clustering in real complex networks
title_sort Deciphering the global organization of clustering in real complex networks
dc.creator.none.fl_str_mv Colomer de Simón, Pol
Serrano, María de Los Angeles
Beiro, Mariano Gastón
Alvarez Hamelin, Jose Ignacio
Boguñá, Marián
author Colomer de Simón, Pol
author_facet Colomer de Simón, Pol
Serrano, María de Los Angeles
Beiro, Mariano Gastón
Alvarez Hamelin, Jose Ignacio
Boguñá, Marián
author_role author
author2 Serrano, María de Los Angeles
Beiro, Mariano Gastón
Alvarez Hamelin, Jose Ignacio
Boguñá, Marián
author2_role author
author
author
author
dc.subject.none.fl_str_mv Phase transitions and critical phenomena
Complex networks
Nonlinear phenomena
Statistical physics
topic Phase transitions and critical phenomena
Complex networks
Nonlinear phenomena
Statistical physics
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We uncover the global organization of clustering in real complex networks. To this end, we ask whether triangles in real networks organize as in maximally random graphs with given degree and clustering distributions, or as in maximally ordered graph models where triangles are forced into modules. The answer comes by way of exploring m-core landscapes, where the m-core is defined, akin to the k-core, as the maximal subgraph with edges participating in at least m triangles. This property defines a set of nested subgraphs that, contrarily to k-cores, is able to distinguish between hierarchical and modular architectures. We find that the clustering organization in real networks is neither completely random nor ordered although, surprisingly, it is more random than modular. This supports the idea that the structure of real networks may in fact be the outcome of self-organized processes based on local optimization rules, in contrast to global optimization principles.
Fil: Colomer de Simón, Pol. Universidad de Barcelona; España
Fil: Serrano, María de Los Angeles. Universidad de Barcelona; España
Fil: Beiro, Mariano Gastón. Universidad de Buenos Aires. Facultad de Ingenieria. Departamento de Electronica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería; Argentina
Fil: Alvarez Hamelin, Jose Ignacio. Universidad de Buenos Aires. Facultad de Ingenieria. Departamento de Electronica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería; Argentina
Fil: Boguñá, Marián. Universidad de Barcelona; España
description We uncover the global organization of clustering in real complex networks. To this end, we ask whether triangles in real networks organize as in maximally random graphs with given degree and clustering distributions, or as in maximally ordered graph models where triangles are forced into modules. The answer comes by way of exploring m-core landscapes, where the m-core is defined, akin to the k-core, as the maximal subgraph with edges participating in at least m triangles. This property defines a set of nested subgraphs that, contrarily to k-cores, is able to distinguish between hierarchical and modular architectures. We find that the clustering organization in real networks is neither completely random nor ordered although, surprisingly, it is more random than modular. This supports the idea that the structure of real networks may in fact be the outcome of self-organized processes based on local optimization rules, in contrast to global optimization principles.
publishDate 2013
dc.date.none.fl_str_mv 2013-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/12532
Colomer de Simón, Pol; Serrano, María de Los Angeles; Beiro, Mariano Gastón; Alvarez Hamelin, Jose Ignacio; Boguñá, Marián; Deciphering the global organization of clustering in real complex networks; Nature Publishing Group; Scientific Reports; 3; 2517; 8-2013; 1-6
2045-2322
url http://hdl.handle.net/11336/12532
identifier_str_mv Colomer de Simón, Pol; Serrano, María de Los Angeles; Beiro, Mariano Gastón; Alvarez Hamelin, Jose Ignacio; Boguñá, Marián; Deciphering the global organization of clustering in real complex networks; Nature Publishing Group; Scientific Reports; 3; 2517; 8-2013; 1-6
2045-2322
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/srep02517
info:eu-repo/semantics/altIdentifier/doi/10.1038/srep02517
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature Publishing Group
publisher.none.fl_str_mv Nature Publishing Group
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083309997654016
score 13.22299