Deciphering the global organization of clustering in real complex networks
- Autores
- Colomer de Simón, Pol; Serrano, María de Los Angeles; Beiro, Mariano Gastón; Alvarez Hamelin, Jose Ignacio; Boguñá, Marián
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We uncover the global organization of clustering in real complex networks. To this end, we ask whether triangles in real networks organize as in maximally random graphs with given degree and clustering distributions, or as in maximally ordered graph models where triangles are forced into modules. The answer comes by way of exploring m-core landscapes, where the m-core is defined, akin to the k-core, as the maximal subgraph with edges participating in at least m triangles. This property defines a set of nested subgraphs that, contrarily to k-cores, is able to distinguish between hierarchical and modular architectures. We find that the clustering organization in real networks is neither completely random nor ordered although, surprisingly, it is more random than modular. This supports the idea that the structure of real networks may in fact be the outcome of self-organized processes based on local optimization rules, in contrast to global optimization principles.
Fil: Colomer de Simón, Pol. Universidad de Barcelona; España
Fil: Serrano, María de Los Angeles. Universidad de Barcelona; España
Fil: Beiro, Mariano Gastón. Universidad de Buenos Aires. Facultad de Ingenieria. Departamento de Electronica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería; Argentina
Fil: Alvarez Hamelin, Jose Ignacio. Universidad de Buenos Aires. Facultad de Ingenieria. Departamento de Electronica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería; Argentina
Fil: Boguñá, Marián. Universidad de Barcelona; España - Materia
-
Phase transitions and critical phenomena
Complex networks
Nonlinear phenomena
Statistical physics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/12532
Ver los metadatos del registro completo
id |
CONICETDig_38877cacdd93e7eace99c0da00704a4d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/12532 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Deciphering the global organization of clustering in real complex networksColomer de Simón, PolSerrano, María de Los AngelesBeiro, Mariano GastónAlvarez Hamelin, Jose IgnacioBoguñá, MariánPhase transitions and critical phenomenaComplex networksNonlinear phenomenaStatistical physicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We uncover the global organization of clustering in real complex networks. To this end, we ask whether triangles in real networks organize as in maximally random graphs with given degree and clustering distributions, or as in maximally ordered graph models where triangles are forced into modules. The answer comes by way of exploring m-core landscapes, where the m-core is defined, akin to the k-core, as the maximal subgraph with edges participating in at least m triangles. This property defines a set of nested subgraphs that, contrarily to k-cores, is able to distinguish between hierarchical and modular architectures. We find that the clustering organization in real networks is neither completely random nor ordered although, surprisingly, it is more random than modular. This supports the idea that the structure of real networks may in fact be the outcome of self-organized processes based on local optimization rules, in contrast to global optimization principles.Fil: Colomer de Simón, Pol. Universidad de Barcelona; EspañaFil: Serrano, María de Los Angeles. Universidad de Barcelona; EspañaFil: Beiro, Mariano Gastón. Universidad de Buenos Aires. Facultad de Ingenieria. Departamento de Electronica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería; ArgentinaFil: Alvarez Hamelin, Jose Ignacio. Universidad de Buenos Aires. Facultad de Ingenieria. Departamento de Electronica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería; ArgentinaFil: Boguñá, Marián. Universidad de Barcelona; EspañaNature Publishing Group2013-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/12532Colomer de Simón, Pol; Serrano, María de Los Angeles; Beiro, Mariano Gastón; Alvarez Hamelin, Jose Ignacio; Boguñá, Marián; Deciphering the global organization of clustering in real complex networks; Nature Publishing Group; Scientific Reports; 3; 2517; 8-2013; 1-62045-2322enginfo:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/srep02517info:eu-repo/semantics/altIdentifier/doi/10.1038/srep02517info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:16:10Zoai:ri.conicet.gov.ar:11336/12532instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:16:11.215CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Deciphering the global organization of clustering in real complex networks |
title |
Deciphering the global organization of clustering in real complex networks |
spellingShingle |
Deciphering the global organization of clustering in real complex networks Colomer de Simón, Pol Phase transitions and critical phenomena Complex networks Nonlinear phenomena Statistical physics |
title_short |
Deciphering the global organization of clustering in real complex networks |
title_full |
Deciphering the global organization of clustering in real complex networks |
title_fullStr |
Deciphering the global organization of clustering in real complex networks |
title_full_unstemmed |
Deciphering the global organization of clustering in real complex networks |
title_sort |
Deciphering the global organization of clustering in real complex networks |
dc.creator.none.fl_str_mv |
Colomer de Simón, Pol Serrano, María de Los Angeles Beiro, Mariano Gastón Alvarez Hamelin, Jose Ignacio Boguñá, Marián |
author |
Colomer de Simón, Pol |
author_facet |
Colomer de Simón, Pol Serrano, María de Los Angeles Beiro, Mariano Gastón Alvarez Hamelin, Jose Ignacio Boguñá, Marián |
author_role |
author |
author2 |
Serrano, María de Los Angeles Beiro, Mariano Gastón Alvarez Hamelin, Jose Ignacio Boguñá, Marián |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Phase transitions and critical phenomena Complex networks Nonlinear phenomena Statistical physics |
topic |
Phase transitions and critical phenomena Complex networks Nonlinear phenomena Statistical physics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We uncover the global organization of clustering in real complex networks. To this end, we ask whether triangles in real networks organize as in maximally random graphs with given degree and clustering distributions, or as in maximally ordered graph models where triangles are forced into modules. The answer comes by way of exploring m-core landscapes, where the m-core is defined, akin to the k-core, as the maximal subgraph with edges participating in at least m triangles. This property defines a set of nested subgraphs that, contrarily to k-cores, is able to distinguish between hierarchical and modular architectures. We find that the clustering organization in real networks is neither completely random nor ordered although, surprisingly, it is more random than modular. This supports the idea that the structure of real networks may in fact be the outcome of self-organized processes based on local optimization rules, in contrast to global optimization principles. Fil: Colomer de Simón, Pol. Universidad de Barcelona; España Fil: Serrano, María de Los Angeles. Universidad de Barcelona; España Fil: Beiro, Mariano Gastón. Universidad de Buenos Aires. Facultad de Ingenieria. Departamento de Electronica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería; Argentina Fil: Alvarez Hamelin, Jose Ignacio. Universidad de Buenos Aires. Facultad de Ingenieria. Departamento de Electronica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería; Argentina Fil: Boguñá, Marián. Universidad de Barcelona; España |
description |
We uncover the global organization of clustering in real complex networks. To this end, we ask whether triangles in real networks organize as in maximally random graphs with given degree and clustering distributions, or as in maximally ordered graph models where triangles are forced into modules. The answer comes by way of exploring m-core landscapes, where the m-core is defined, akin to the k-core, as the maximal subgraph with edges participating in at least m triangles. This property defines a set of nested subgraphs that, contrarily to k-cores, is able to distinguish between hierarchical and modular architectures. We find that the clustering organization in real networks is neither completely random nor ordered although, surprisingly, it is more random than modular. This supports the idea that the structure of real networks may in fact be the outcome of self-organized processes based on local optimization rules, in contrast to global optimization principles. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/12532 Colomer de Simón, Pol; Serrano, María de Los Angeles; Beiro, Mariano Gastón; Alvarez Hamelin, Jose Ignacio; Boguñá, Marián; Deciphering the global organization of clustering in real complex networks; Nature Publishing Group; Scientific Reports; 3; 2517; 8-2013; 1-6 2045-2322 |
url |
http://hdl.handle.net/11336/12532 |
identifier_str_mv |
Colomer de Simón, Pol; Serrano, María de Los Angeles; Beiro, Mariano Gastón; Alvarez Hamelin, Jose Ignacio; Boguñá, Marián; Deciphering the global organization of clustering in real complex networks; Nature Publishing Group; Scientific Reports; 3; 2517; 8-2013; 1-6 2045-2322 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/srep02517 info:eu-repo/semantics/altIdentifier/doi/10.1038/srep02517 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature Publishing Group |
publisher.none.fl_str_mv |
Nature Publishing Group |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083309997654016 |
score |
13.22299 |