A special class of rank 10 and 11 Coxeter groups
- Autores
- Henneaux, Marc; Leston, Mauricio; Persson, Daniel; Spindel, Philippe
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the course of investigating regular subalgebras of E10(10) related to cosmological solutions of 11-dimensional supergravity supporting an electric 4-form field, a class of rank 10 Coxeter subgroups of the Weyl group of E10(10) was uncovered (hep-th/0606123). These Coxeter groups all share the property that their Coxeter graphs have incidence index 3, i.e. that each node is incident to three and only three single lines. Furthermore, the Coxeter exponents are either 2 or 3, but never ∞. We here go beyond subgroups of the Weyl group of E10(10) and classify all rank 10 Coxeter graphs with these properties. We find 21 distinct Coxeter groups of which 7 were already described in hep-th/0606123. Moreover, we extend the classification to the rank 11 case and we find 252 inequivalent rank 11 Coxeter groups with incidence index 4, of which at least 28 can be regularly embedded into E11(11) .
Fil: Henneaux, Marc. Universite Libre de Bruxelles; Bélgica
Fil: Leston, Mauricio. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina. Vrije Unviversiteit Brussel; Bélgica
Fil: Persson, Daniel. Universite Libre de Bruxelles; Bélgica
Fil: Spindel, Philippe. Acad´emie Wallonie-Bruxelles; Bélgica - Materia
- HYDDEN SYMMETRIES
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/20825
Ver los metadatos del registro completo
id |
CONICETDig_380d2f0643f645cf9f4551cb8ec3b8c3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/20825 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A special class of rank 10 and 11 Coxeter groupsHenneaux, MarcLeston, MauricioPersson, DanielSpindel, PhilippeHYDDEN SYMMETRIEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In the course of investigating regular subalgebras of E10(10) related to cosmological solutions of 11-dimensional supergravity supporting an electric 4-form field, a class of rank 10 Coxeter subgroups of the Weyl group of E10(10) was uncovered (hep-th/0606123). These Coxeter groups all share the property that their Coxeter graphs have incidence index 3, i.e. that each node is incident to three and only three single lines. Furthermore, the Coxeter exponents are either 2 or 3, but never ∞. We here go beyond subgroups of the Weyl group of E10(10) and classify all rank 10 Coxeter graphs with these properties. We find 21 distinct Coxeter groups of which 7 were already described in hep-th/0606123. Moreover, we extend the classification to the rank 11 case and we find 252 inequivalent rank 11 Coxeter groups with incidence index 4, of which at least 28 can be regularly embedded into E11(11) .Fil: Henneaux, Marc. Universite Libre de Bruxelles; BélgicaFil: Leston, Mauricio. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina. Vrije Unviversiteit Brussel; BélgicaFil: Persson, Daniel. Universite Libre de Bruxelles; BélgicaFil: Spindel, Philippe. Acad´emie Wallonie-Bruxelles; BélgicaAmerican Institute of Physics2007-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/20825Henneaux, Marc; Leston, Mauricio; Persson, Daniel; Spindel, Philippe; A special class of rank 10 and 11 Coxeter groups; American Institute of Physics; Journal Of Mathematical Physics; 48; 5; 12-2007; 1-12; 0535120022-2488CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.2738754info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/hep-th/0610278info:eu-repo/semantics/altIdentifier/doi/10.1063/1.2738754info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:37Zoai:ri.conicet.gov.ar:11336/20825instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:37.695CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A special class of rank 10 and 11 Coxeter groups |
title |
A special class of rank 10 and 11 Coxeter groups |
spellingShingle |
A special class of rank 10 and 11 Coxeter groups Henneaux, Marc HYDDEN SYMMETRIES |
title_short |
A special class of rank 10 and 11 Coxeter groups |
title_full |
A special class of rank 10 and 11 Coxeter groups |
title_fullStr |
A special class of rank 10 and 11 Coxeter groups |
title_full_unstemmed |
A special class of rank 10 and 11 Coxeter groups |
title_sort |
A special class of rank 10 and 11 Coxeter groups |
dc.creator.none.fl_str_mv |
Henneaux, Marc Leston, Mauricio Persson, Daniel Spindel, Philippe |
author |
Henneaux, Marc |
author_facet |
Henneaux, Marc Leston, Mauricio Persson, Daniel Spindel, Philippe |
author_role |
author |
author2 |
Leston, Mauricio Persson, Daniel Spindel, Philippe |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
HYDDEN SYMMETRIES |
topic |
HYDDEN SYMMETRIES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In the course of investigating regular subalgebras of E10(10) related to cosmological solutions of 11-dimensional supergravity supporting an electric 4-form field, a class of rank 10 Coxeter subgroups of the Weyl group of E10(10) was uncovered (hep-th/0606123). These Coxeter groups all share the property that their Coxeter graphs have incidence index 3, i.e. that each node is incident to three and only three single lines. Furthermore, the Coxeter exponents are either 2 or 3, but never ∞. We here go beyond subgroups of the Weyl group of E10(10) and classify all rank 10 Coxeter graphs with these properties. We find 21 distinct Coxeter groups of which 7 were already described in hep-th/0606123. Moreover, we extend the classification to the rank 11 case and we find 252 inequivalent rank 11 Coxeter groups with incidence index 4, of which at least 28 can be regularly embedded into E11(11) . Fil: Henneaux, Marc. Universite Libre de Bruxelles; Bélgica Fil: Leston, Mauricio. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina. Vrije Unviversiteit Brussel; Bélgica Fil: Persson, Daniel. Universite Libre de Bruxelles; Bélgica Fil: Spindel, Philippe. Acad´emie Wallonie-Bruxelles; Bélgica |
description |
In the course of investigating regular subalgebras of E10(10) related to cosmological solutions of 11-dimensional supergravity supporting an electric 4-form field, a class of rank 10 Coxeter subgroups of the Weyl group of E10(10) was uncovered (hep-th/0606123). These Coxeter groups all share the property that their Coxeter graphs have incidence index 3, i.e. that each node is incident to three and only three single lines. Furthermore, the Coxeter exponents are either 2 or 3, but never ∞. We here go beyond subgroups of the Weyl group of E10(10) and classify all rank 10 Coxeter graphs with these properties. We find 21 distinct Coxeter groups of which 7 were already described in hep-th/0606123. Moreover, we extend the classification to the rank 11 case and we find 252 inequivalent rank 11 Coxeter groups with incidence index 4, of which at least 28 can be regularly embedded into E11(11) . |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/20825 Henneaux, Marc; Leston, Mauricio; Persson, Daniel; Spindel, Philippe; A special class of rank 10 and 11 Coxeter groups; American Institute of Physics; Journal Of Mathematical Physics; 48; 5; 12-2007; 1-12; 053512 0022-2488 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/20825 |
identifier_str_mv |
Henneaux, Marc; Leston, Mauricio; Persson, Daniel; Spindel, Philippe; A special class of rank 10 and 11 Coxeter groups; American Institute of Physics; Journal Of Mathematical Physics; 48; 5; 12-2007; 1-12; 053512 0022-2488 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.2738754 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/hep-th/0610278 info:eu-repo/semantics/altIdentifier/doi/10.1063/1.2738754 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269106585206784 |
score |
13.13397 |