A nonparametric nonstationary procedure for failure prediction

Autores
Pfefferman, Jonas; Cernuschi Frias, Bruno
Año de publicación
2002
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The time between failures is a very useful measurement to analyze reliability models for time-dependent systems. In many cases, the failure-generation process is assumed to be stationary, even though the process changes its statistics as time elapses. This paper presents a new estimation procedure for the probabilities of failures; it is based on estimating time-between-failures. The main characteristics of this procedure are that no probability distribution function is assumed for the failure process, and that the failure process is not assumed to be stationary. The model classifies the failures in Q different types, and estimates the probability of each type of failure s-independently from the others. This method does not use histogram techniques to estimate the probabilities of occurrence of each failure-type; rather it estimates the probabilities directly from the values of the time-instants at which the failures occur. The method assumes quasistationarity only in the interval of time between the last 2 occurrences of the same failure-type. An inherent characteristic of this method is that it assigns different sizes for the time-windows used to estimate the probabilities of each failure-type. For the failure-types with low probability, the estimator uses wide windows, while for those with high probability the estimator uses narrow windows. As an example, the model is applied to software reliability data.
Fil: Pfefferman, Jonas. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina
Fil: Cernuschi Frias, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Materia
PREDICTIVE VALIDITY
SOFTWARE RELIABILITY MODEL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/110171

id CONICETDig_37b30325d3eda544f2ed690341474c54
oai_identifier_str oai:ri.conicet.gov.ar:11336/110171
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A nonparametric nonstationary procedure for failure predictionPfefferman, JonasCernuschi Frias, BrunoPREDICTIVE VALIDITYSOFTWARE RELIABILITY MODELhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2The time between failures is a very useful measurement to analyze reliability models for time-dependent systems. In many cases, the failure-generation process is assumed to be stationary, even though the process changes its statistics as time elapses. This paper presents a new estimation procedure for the probabilities of failures; it is based on estimating time-between-failures. The main characteristics of this procedure are that no probability distribution function is assumed for the failure process, and that the failure process is not assumed to be stationary. The model classifies the failures in Q different types, and estimates the probability of each type of failure s-independently from the others. This method does not use histogram techniques to estimate the probabilities of occurrence of each failure-type; rather it estimates the probabilities directly from the values of the time-instants at which the failures occur. The method assumes quasistationarity only in the interval of time between the last 2 occurrences of the same failure-type. An inherent characteristic of this method is that it assigns different sizes for the time-windows used to estimate the probabilities of each failure-type. For the failure-types with low probability, the estimator uses wide windows, while for those with high probability the estimator uses narrow windows. As an example, the model is applied to software reliability data.Fil: Pfefferman, Jonas. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; ArgentinaFil: Cernuschi Frias, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaInstitute of Electrical and Electronics Engineers2002-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/110171Pfefferman, Jonas; Cernuschi Frias, Bruno; A nonparametric nonstationary procedure for failure prediction; Institute of Electrical and Electronics Engineers; Ieee Transactions On Reliability; 51; 4; 12-2002; 434-4420018-9529CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/1044341info:eu-repo/semantics/altIdentifier/doi/10.1109/TR.2002.804733info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:48Zoai:ri.conicet.gov.ar:11336/110171instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:48.833CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A nonparametric nonstationary procedure for failure prediction
title A nonparametric nonstationary procedure for failure prediction
spellingShingle A nonparametric nonstationary procedure for failure prediction
Pfefferman, Jonas
PREDICTIVE VALIDITY
SOFTWARE RELIABILITY MODEL
title_short A nonparametric nonstationary procedure for failure prediction
title_full A nonparametric nonstationary procedure for failure prediction
title_fullStr A nonparametric nonstationary procedure for failure prediction
title_full_unstemmed A nonparametric nonstationary procedure for failure prediction
title_sort A nonparametric nonstationary procedure for failure prediction
dc.creator.none.fl_str_mv Pfefferman, Jonas
Cernuschi Frias, Bruno
author Pfefferman, Jonas
author_facet Pfefferman, Jonas
Cernuschi Frias, Bruno
author_role author
author2 Cernuschi Frias, Bruno
author2_role author
dc.subject.none.fl_str_mv PREDICTIVE VALIDITY
SOFTWARE RELIABILITY MODEL
topic PREDICTIVE VALIDITY
SOFTWARE RELIABILITY MODEL
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The time between failures is a very useful measurement to analyze reliability models for time-dependent systems. In many cases, the failure-generation process is assumed to be stationary, even though the process changes its statistics as time elapses. This paper presents a new estimation procedure for the probabilities of failures; it is based on estimating time-between-failures. The main characteristics of this procedure are that no probability distribution function is assumed for the failure process, and that the failure process is not assumed to be stationary. The model classifies the failures in Q different types, and estimates the probability of each type of failure s-independently from the others. This method does not use histogram techniques to estimate the probabilities of occurrence of each failure-type; rather it estimates the probabilities directly from the values of the time-instants at which the failures occur. The method assumes quasistationarity only in the interval of time between the last 2 occurrences of the same failure-type. An inherent characteristic of this method is that it assigns different sizes for the time-windows used to estimate the probabilities of each failure-type. For the failure-types with low probability, the estimator uses wide windows, while for those with high probability the estimator uses narrow windows. As an example, the model is applied to software reliability data.
Fil: Pfefferman, Jonas. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina
Fil: Cernuschi Frias, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
description The time between failures is a very useful measurement to analyze reliability models for time-dependent systems. In many cases, the failure-generation process is assumed to be stationary, even though the process changes its statistics as time elapses. This paper presents a new estimation procedure for the probabilities of failures; it is based on estimating time-between-failures. The main characteristics of this procedure are that no probability distribution function is assumed for the failure process, and that the failure process is not assumed to be stationary. The model classifies the failures in Q different types, and estimates the probability of each type of failure s-independently from the others. This method does not use histogram techniques to estimate the probabilities of occurrence of each failure-type; rather it estimates the probabilities directly from the values of the time-instants at which the failures occur. The method assumes quasistationarity only in the interval of time between the last 2 occurrences of the same failure-type. An inherent characteristic of this method is that it assigns different sizes for the time-windows used to estimate the probabilities of each failure-type. For the failure-types with low probability, the estimator uses wide windows, while for those with high probability the estimator uses narrow windows. As an example, the model is applied to software reliability data.
publishDate 2002
dc.date.none.fl_str_mv 2002-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/110171
Pfefferman, Jonas; Cernuschi Frias, Bruno; A nonparametric nonstationary procedure for failure prediction; Institute of Electrical and Electronics Engineers; Ieee Transactions On Reliability; 51; 4; 12-2002; 434-442
0018-9529
CONICET Digital
CONICET
url http://hdl.handle.net/11336/110171
identifier_str_mv Pfefferman, Jonas; Cernuschi Frias, Bruno; A nonparametric nonstationary procedure for failure prediction; Institute of Electrical and Electronics Engineers; Ieee Transactions On Reliability; 51; 4; 12-2002; 434-442
0018-9529
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/1044341
info:eu-repo/semantics/altIdentifier/doi/10.1109/TR.2002.804733
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269543502708736
score 13.13397