A nonparametric nonstationary procedure for failure prediction
- Autores
- Pfefferman, Jonas; Cernuschi Frias, Bruno
- Año de publicación
- 2002
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The time between failures is a very useful measurement to analyze reliability models for time-dependent systems. In many cases, the failure-generation process is assumed to be stationary, even though the process changes its statistics as time elapses. This paper presents a new estimation procedure for the probabilities of failures; it is based on estimating time-between-failures. The main characteristics of this procedure are that no probability distribution function is assumed for the failure process, and that the failure process is not assumed to be stationary. The model classifies the failures in Q different types, and estimates the probability of each type of failure s-independently from the others. This method does not use histogram techniques to estimate the probabilities of occurrence of each failure-type; rather it estimates the probabilities directly from the values of the time-instants at which the failures occur. The method assumes quasistationarity only in the interval of time between the last 2 occurrences of the same failure-type. An inherent characteristic of this method is that it assigns different sizes for the time-windows used to estimate the probabilities of each failure-type. For the failure-types with low probability, the estimator uses wide windows, while for those with high probability the estimator uses narrow windows. As an example, the model is applied to software reliability data.
Fil: Pfefferman, Jonas. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina
Fil: Cernuschi Frias, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
PREDICTIVE VALIDITY
SOFTWARE RELIABILITY MODEL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/110171
Ver los metadatos del registro completo
id |
CONICETDig_37b30325d3eda544f2ed690341474c54 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/110171 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A nonparametric nonstationary procedure for failure predictionPfefferman, JonasCernuschi Frias, BrunoPREDICTIVE VALIDITYSOFTWARE RELIABILITY MODELhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2The time between failures is a very useful measurement to analyze reliability models for time-dependent systems. In many cases, the failure-generation process is assumed to be stationary, even though the process changes its statistics as time elapses. This paper presents a new estimation procedure for the probabilities of failures; it is based on estimating time-between-failures. The main characteristics of this procedure are that no probability distribution function is assumed for the failure process, and that the failure process is not assumed to be stationary. The model classifies the failures in Q different types, and estimates the probability of each type of failure s-independently from the others. This method does not use histogram techniques to estimate the probabilities of occurrence of each failure-type; rather it estimates the probabilities directly from the values of the time-instants at which the failures occur. The method assumes quasistationarity only in the interval of time between the last 2 occurrences of the same failure-type. An inherent characteristic of this method is that it assigns different sizes for the time-windows used to estimate the probabilities of each failure-type. For the failure-types with low probability, the estimator uses wide windows, while for those with high probability the estimator uses narrow windows. As an example, the model is applied to software reliability data.Fil: Pfefferman, Jonas. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; ArgentinaFil: Cernuschi Frias, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaInstitute of Electrical and Electronics Engineers2002-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/110171Pfefferman, Jonas; Cernuschi Frias, Bruno; A nonparametric nonstationary procedure for failure prediction; Institute of Electrical and Electronics Engineers; Ieee Transactions On Reliability; 51; 4; 12-2002; 434-4420018-9529CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/1044341info:eu-repo/semantics/altIdentifier/doi/10.1109/TR.2002.804733info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:48Zoai:ri.conicet.gov.ar:11336/110171instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:48.833CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A nonparametric nonstationary procedure for failure prediction |
title |
A nonparametric nonstationary procedure for failure prediction |
spellingShingle |
A nonparametric nonstationary procedure for failure prediction Pfefferman, Jonas PREDICTIVE VALIDITY SOFTWARE RELIABILITY MODEL |
title_short |
A nonparametric nonstationary procedure for failure prediction |
title_full |
A nonparametric nonstationary procedure for failure prediction |
title_fullStr |
A nonparametric nonstationary procedure for failure prediction |
title_full_unstemmed |
A nonparametric nonstationary procedure for failure prediction |
title_sort |
A nonparametric nonstationary procedure for failure prediction |
dc.creator.none.fl_str_mv |
Pfefferman, Jonas Cernuschi Frias, Bruno |
author |
Pfefferman, Jonas |
author_facet |
Pfefferman, Jonas Cernuschi Frias, Bruno |
author_role |
author |
author2 |
Cernuschi Frias, Bruno |
author2_role |
author |
dc.subject.none.fl_str_mv |
PREDICTIVE VALIDITY SOFTWARE RELIABILITY MODEL |
topic |
PREDICTIVE VALIDITY SOFTWARE RELIABILITY MODEL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The time between failures is a very useful measurement to analyze reliability models for time-dependent systems. In many cases, the failure-generation process is assumed to be stationary, even though the process changes its statistics as time elapses. This paper presents a new estimation procedure for the probabilities of failures; it is based on estimating time-between-failures. The main characteristics of this procedure are that no probability distribution function is assumed for the failure process, and that the failure process is not assumed to be stationary. The model classifies the failures in Q different types, and estimates the probability of each type of failure s-independently from the others. This method does not use histogram techniques to estimate the probabilities of occurrence of each failure-type; rather it estimates the probabilities directly from the values of the time-instants at which the failures occur. The method assumes quasistationarity only in the interval of time between the last 2 occurrences of the same failure-type. An inherent characteristic of this method is that it assigns different sizes for the time-windows used to estimate the probabilities of each failure-type. For the failure-types with low probability, the estimator uses wide windows, while for those with high probability the estimator uses narrow windows. As an example, the model is applied to software reliability data. Fil: Pfefferman, Jonas. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina Fil: Cernuschi Frias, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
description |
The time between failures is a very useful measurement to analyze reliability models for time-dependent systems. In many cases, the failure-generation process is assumed to be stationary, even though the process changes its statistics as time elapses. This paper presents a new estimation procedure for the probabilities of failures; it is based on estimating time-between-failures. The main characteristics of this procedure are that no probability distribution function is assumed for the failure process, and that the failure process is not assumed to be stationary. The model classifies the failures in Q different types, and estimates the probability of each type of failure s-independently from the others. This method does not use histogram techniques to estimate the probabilities of occurrence of each failure-type; rather it estimates the probabilities directly from the values of the time-instants at which the failures occur. The method assumes quasistationarity only in the interval of time between the last 2 occurrences of the same failure-type. An inherent characteristic of this method is that it assigns different sizes for the time-windows used to estimate the probabilities of each failure-type. For the failure-types with low probability, the estimator uses wide windows, while for those with high probability the estimator uses narrow windows. As an example, the model is applied to software reliability data. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/110171 Pfefferman, Jonas; Cernuschi Frias, Bruno; A nonparametric nonstationary procedure for failure prediction; Institute of Electrical and Electronics Engineers; Ieee Transactions On Reliability; 51; 4; 12-2002; 434-442 0018-9529 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/110171 |
identifier_str_mv |
Pfefferman, Jonas; Cernuschi Frias, Bruno; A nonparametric nonstationary procedure for failure prediction; Institute of Electrical and Electronics Engineers; Ieee Transactions On Reliability; 51; 4; 12-2002; 434-442 0018-9529 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/1044341 info:eu-repo/semantics/altIdentifier/doi/10.1109/TR.2002.804733 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269543502708736 |
score |
13.13397 |